×

zbMATH — the first resource for mathematics

Infrared finite observables in \({\mathcal N}=8\) supergravity. (English. Russian original) Zbl 1228.83111
Proc. Steklov Inst. Math. 272, 39-46 (2011); translation from Tr. Mat. Inst. Steklova 272, 46-53 (2011).
Summary: Using the algorithm of constructing the IR finite observables discussed in detail in our earlier papers, we study the construction of such observables in \(\mathcal N = 8\) supergravity in the first nontrivial order of perturbation theory. In general, contrary to the amplitudes defined in the presence of some IR regulator, such observables do not reveal any “simple” structure.
MSC:
83E50 Supergravity
81T60 Supersymmetric field theories in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. J. Dixon, ”Gluon Scattering in N = 4 Super-Yang-Mills Theory from Weak to Strong Coupling,” Proc. Sci. RADCOR2007, 056 (2007); arXiv: 0803.2475 [hep-th].
[2] Z. Bern, L. Dixon, D. C. Dunbar, and D. A. Kosower, ”Fusing Gauge Theory Tree Amplitudes into Loop Amplitudes,” Nucl. Phys. B 435, 59–101 (1995); arXiv: hep-ph/9409265.
[3] Z. Bern, L. Dixon, D. C. Dunbar, and D. A. Kosower, ”One-Loop n-Point Gauge Theory Amplitudes, Unitarity and Collinear Limits,” Nucl. Phys. B 425, 217–260 (1994); arXiv: hep-ph/9403226. · Zbl 1049.81644
[4] Z. Bern, M. Czakon, L. J. Dixon, D. A. Kosower, and V. A. Smirnov, ”Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory,” Phys. Rev. D 75, 085010 (2007); arXiv: hep-th/0610248.
[5] F. Cachazo, M. Spradlin, and A. Volovich, ”Four-Loop Cusp Anomalous Dimension from Obstructions,” Phys. Rev. D 75, 105011 (2007); arXiv: hep-th/0612309.
[6] D. C. Dunbar and P. S. Norridge, ”Infinities within Graviton Scattering Amplitudes,” Class. Quantum Grav. 14, 351–365 (1997); arXiv: hep-th/9512084. · Zbl 0925.83030
[7] Z. Bern, L. Dixon, M. Perelstein, and J. S. Rozowsky, ”Multi-leg One-Loop Gravity Amplitudes from Gauge Theory,” Nucl. Phys. B 546, 423–479 (1999); arXiv: hep-th/9811140. · Zbl 0953.83006
[8] Z. Bern, L. Dixon, D. C. Dunbar, M. Perelstein, and J. S. Rozowsky, ”On the Relationship between Yang-Mills Theory and Gravity and Its Implication for Ultraviolet Divergences,” Nucl. Phys. B 530, 401–456 (1998); arXiv: hep-th/9802162.
[9] Z. Bern, J. J. Carrasco, L. J. Dixon, H. Johansson, D. A. Kosower, and R. Roiban, ”Cancellations beyond Finiteness in N = 8 Supergravity at Three Loops,” Phys. Rev. Lett. 98, 161303 (2007); arXiv: hep-th/0702112.
[10] Z. Bern, J. J. M. Carrasco, L. J. Dixon, H. Johansson, and R. Roiban, ”Ultraviolet Behavior of N = 8 Supergravity at Four Loops,” Phys. Rev. Lett. 103, 081301 (2009); arXiv: 0905.2326 [hep-th].
[11] Z. Bern, L. J. Dixon, and R. Roiban, ”Is N = 8 Supergravity Ultraviolet Finite?,” Phys. Lett. B 644, 265–271 (2007); arXiv: hep-th/0611086. · Zbl 1248.83136
[12] N. Berkovits, ”New Higher-Derivative R 4 Theorems for Graviton Scattering,” Phys. Rev. Lett. 98, 211601 (2007); arXiv: hep-th/0609006. · Zbl 1228.83042
[13] M. B. Green, J. G. Russo, and P. Vanhove, ”Ultraviolet Properties of Maximal Supergravity,” Phys. Rev. Lett. 98, 131602 (2007); arXiv: hep-th/0611273.
[14] G. Bossard, P. S. Howe, and K. S. Stelle, ”A Note on the UV Behaviour of Maximally Supersymmetric Yang-Mills Theories,” Phys. Lett. B 682, 137–142 (2009); arXiv: 0908.3883 [hep-th].
[15] M. B. Green, J. G. Russo, and P. Vanhove, ”String Theory Dualities and Supergravity Divergences,” J. High Energy Phys., No. 6, 075 (2010); arXiv: 1002.3805 [hep-th]. · Zbl 1288.81107
[16] L. Brink, S.-S. Kim, and P. Ramond, ”E 7(7) on the Light Cone,” J. High Energy Phys., No. 6, 034 (2008); AIP Conf. Proc. 1078, 447–450 (2008); arXiv: 0801.2993 [hep-th].
[17] R. Kallosh and M. Soroush, ”Explicit Action of E 7(7) on N = 8 Supergravity Fields,” Nucl. Phys. B 801, 25–44 (2008); arXiv: 0802.4106 [hep-th]. · Zbl 1189.83089
[18] R. Kallosh and T. Kugo, ”The Footprint of E 7(7) in Amplitudes of N = 8 Supergravity,” J. High Energy Phys., No. 1, 072 (2009); arXiv: 0811.3414 [hep-th]. · Zbl 1243.81204
[19] Z. Bern, J. J. M. Carrasco, and H. Johansson, ”Progress on Ultraviolet Finiteness of Supergravity,” arXiv: 0902.3765 [hep-th].
[20] P. Vanhove, ”The Critical Ultraviolet Behaviour of N = 8 Supergravity Amplitudes,” arXiv: 1004.1392 [hep-th].
[21] N. Arkani-Hamed, F. Cachazo, and J. Kaplan, ”What Is the Simplest Quantum Field Theory?,” arXiv: 0808.1446 [hep-th]. · Zbl 1291.81356
[22] L. V. Bork, D. I. Kazakov, G. S. Vartanov, and A. V. Zhiboedov, ”Infrared Safe Observables in N = 4 Super Yang-Mills Theory,” Phys. Lett. B 681, 296–303 (2009); arXiv: 0908.0387 [hep-th].
[23] L. V. Bork, D. I. Kazakov, G. S. Vartanov, and A. V. Zhiboedov, ”Construction of Infrared Finite Observables in N = 4 Super Yang-Mills Theory,” Phys. Rev. D 81, 105028 (2010); arXiv: 0911.1617 [hep-th].
[24] Z. Bern, L. J. Dixon, and V. A. Smirnov, ”Iteration of Planar Amplitudes in Maximally Supersymmetric Yang-Mills Theory at Three Loops and Beyond,” Phys. Rev. D 72, 085001 (2005); arXiv: hep-th/0505205.
[25] V. Del Duca, C. Duhr, and V. A. Smirnov, ”An Analytic Result for the Two-Loop Hexagon Wilson Loop in N = 4 SYM,” J. High Energy Phys., No. 3, 099 (2010); arXiv: 0911.5332 [hep-ph]. · Zbl 1271.81104
[26] V. Del Duca, C. Duhr, and V. A. Smirnov, ”The Two-Loop Hexagon Wilson Loop in N = 4 SYM,” arXiv: 1003.1702 [hep-th]. · Zbl 1271.81104
[27] S. D. Ellis, Z. Kunszt, and D. E. Soper, ”One-Jet Inclusive Cross Section at Order {\(\alpha\)} s 3 : Gluons Only,” Phys. Rev. D 40, 2188–2222 (1989).
[28] S. D. Ellis, Z. Kunszt, and D. E. Soper, ”One-Jet Inclusive Cross Section at Order {\(\alpha\)} s 3 : Quarks and Gluons,” Phys. Rev. Lett. 64, 2121–2124 (1990).
[29] Z. Kunszt and D. E. Soper, ”Calculation of Jet Cross Sections in Hadron Collisions at Order {\(\alpha\)} s 3 ,” Phys. Rev. D 46, 192–221 (1992).
[30] S. Frixione, Z. Kunszt, and A. Signer, ”Three-Jet Cross Sections to Next-to-Leading Order,” Nucl. Phys. B 467, 399–442 (1996); arXiv: hep-ph/9512328.
[31] S. Catani and M. H. Seymour, ”A General Algorithm for Calculating Jet Cross Sections in NLO QCD,” Nucl. Phys. B 485, 291–419 (1997); arXiv: hep-ph/9605323.
[32] T. Kinoshita, ”Mass Singularities of Feynman Amplitudes,” J. Math. Phys. 3, 650–677 (1962). · Zbl 0118.44501
[33] T. D. Lee and M. Nauenberg, ”Degenerate Systems and Mass Singularities,” Phys. Rev. 133, B1549–B1562 (1964).
[34] L. Dixon, ”Calculating Scattering Amplitudes Efficiently,” arXiv: hep-ph/9601359.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.