×

Are \(f(R)\) dark energy models cosmologically viable? (English) Zbl 1228.83115

Summary: All \(f(R)\) modified gravity theories are conformally identical to models of quintessence in which matter is coupled to dark energy with a strong coupling. This coupling induces a cosmological evolution radically different from standard cosmology. We find that, in all \(f(R)\) theories where a power of \(R\) is dominant at large or small \(R\) (which include most of those proposed so far in the literature), the scale factor during the matter phase grows as \(t^{1/2}\) instead of the standard law \(t^{2/3}\). This behavior is grossly inconsistent with cosmological observations (e.g., Wilkinson Microwave Anisotropy Probe), thereby ruling out these models even if they pass the supernovae test and can escape the local gravity constraints.

MSC:

83F05 Relativistic cosmology
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] V. Sahni, Int. J. Mod. Phys. D 9 pp 373– (2000) ISSN: http://id.crossref.org/issn/0218-2718
[2] DOI: 10.1016/S0370-1573(03)00120-0 · Zbl 1027.83544
[3] DOI: 10.1142/S021827180600942X · Zbl 1203.83061
[4] DOI: 10.1142/S0218271803004407
[5] DOI: 10.1103/PhysRevD.70.043528
[6] DOI: 10.1016/j.physletb.2003.08.039 · Zbl 1037.83028
[7] DOI: 10.1016/j.physletb.2003.09.033 · Zbl 1029.83503
[8] DOI: 10.1063/1.525659 · Zbl 0568.58015
[9] DOI: 10.1103/PhysRevD.68.123512
[10] DOI: 10.1103/PhysRevD.74.064028
[11] DOI: 10.1016/0370-2693(80)90670-X · Zbl 1371.83222
[12] DOI: 10.1103/PhysRevLett.85.2236
[13] DOI: 10.1103/PhysRevD.63.063504
[14] DOI: 10.1103/PhysRevD.62.043511
[15] DOI: 10.1088/1475-7516/2005/06/007
[16] DOI: 10.1103/PhysRevD.73.103504
[17] DOI: 10.1142/S0218271892000318 · Zbl 0942.83519
[18] DOI: 10.1103/PhysRevD.74.023529
[19] DOI: 10.1103/PhysRevD.68.023514
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.