zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Duality and optimality conditions for generalized equilibrium problems involving DC functions. (English) Zbl 1228.90078
Summary: We consider a generalized equilibrium problem involving DC functions which is called (GEP). For this problem we establish two new dual formulations based on Toland-Fenchel-Lagrange duality for DC programming problems. The first one allows us to obtain a unified dual analysis for many interesting problems. So, this dual coincides with the dual problem proposed by {\it J. E. Martínez-Legaz} and {\it W. Sosa} [J. Glob. Optim. 35, No. 2, 311--319 (2006; Zbl 1106.90074)] for equilibrium problems in the sense of Blum and Oettli. Furthermore it is equivalent to Mosco’s dual problem [{\it U. Mosco}, J. Math. Anal. Appl. 40, 202--206 (1972; Zbl 0262.49003)] when applied to a variational inequality problem. The second dual problem generalizes to our problem another dual scheme that has been recently introduced by {\it F. M. O. Jacinto} and {\it S. Scheimberg} [Optimization 57, No. 6, 795--805 (2008; Zbl 1152.90648)] for convex equilibrium problems. Through these schemes, as by products, we obtain new optimality conditions for (GEP) and also, gap functions for (GEP), which cover the ones in [{\it L. Altangerel, R. I. Bot} and {\it G. Wanka}, Asia-Pac. J. Oper. Res. 24, No. 3, 353--371 (2007; Zbl 1141.49303); Pac. J. Optim. 2, No. 3, 667--678 (2006; Zbl 1103.49016)] for variational inequalities and standard convex equilibrium problems. These results, in turn, when applied to DC and convex optimization problems with convex constraints (considered as special cases of (GEP)) lead to Toland-Fenchel-Lagrange duality for DC problems in [{\it N. Dinh, T. T. A. Nghia} and {\it G. Vallet}, Optimization 59, No. 3--4, 541--560 (2010; Zbl 1218.90155); J. Convex Anal. 15, No. 2, 235--262 (2008; Zbl 1145.49016)], Fenchel-Lagrange and Lagrange dualities for convex problems as in [Antangerel et al., loc. cit.; {\it R. I. Bot} and {\it G. Wanka}, Nonlinear Anal., Theory Methods Appl. 64, No. 12, A, 2787--2804 (2006; Zbl 1087.49026); {\it V. Jeyakumar, N. Dinh} and {\it G. M. Lee}, “A new closed cone constraint qualification for convex optimization”, Applied mathematics research report AMR04/8, University of New South Wales, Sidney, Australia (2004)]. Besides, as consequences of the main results, we obtain some new optimality conditions for DC and convex problems.

90C26Nonconvex programming, global optimization
90C46Optimality conditions, duality
49N15Duality theory (optimization)
58E35Variational inequalities (global problems)
Full Text: DOI
[1] Antangerel L., Bot R.I., Wanka G.: On the construction of gap functions for variational inequalities via conjugate duality. Asia-Pac. J. Oper. Res. 24, 353--371 (2007)
[2] Antangerel L., Bot R.I., Wanka G.: On gap functions for equilibrium problems via Fenchel duality. Pac. J. Optim. 2, 667--678 (2006) · Zbl 1103.49016
[3] Attouch H., Brezis H.: Duality for the sum of convex functions in general Banach spaces. In: Barroso, J.A. (eds) Aspects of Mathematics and its Application, pp. 125--133. Elsevier, Amsterdam, The Netherlands (1986)
[4] Auslender A.: Optimisation. Méthodes Numériques. Masson, Paris (1976)
[5] Bigi G., Castellani M., Kassay G.: A dual view of equilibrium problems. J. Math. Anal. Appl. 342, 17--26 (2008) · Zbl 1155.90021
[6] Blum E., Oettli W.: From optimization and variational inequality to equilibrium problems. Math. Stud. 63, 127--149 (1994) · Zbl 0888.49007
[7] Bot, R.I., Wanka, G.: A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces. Nonlinear Anal, to appear.
[8] Burachik R.S., Jeyakumar V.: A new geometric condition for Fenchel’s duality in infinite dimensional spaces. Math. Program. 104(B), 229--233 (2005) · Zbl 1093.90077 · doi:10.1007/s10107-005-0614-3
[9] Burachik R.S., Jeyakumar V.: A dual condition for the convex subdifferential sum formula with applications. J. Convex Anal. 12, 279--290 (2005) · Zbl 1098.49017
[10] Dinh N., Goberna M.A., López M.A., Son T.Q.: New Farkas-type results with applications to convex infinite programming. ESAIM: Control Optim. Cal. Var. 13, 580--597 (2007) · Zbl 1126.90059 · doi:10.1051/cocv:2007027
[11] Dinh N., Jeyakumar V., Lee G.M.: Sequential Lagrangian conditions for convex programs with applications to semi-definite programming. J. Optim. Theory Appl. 125, 85--112 (2005) · Zbl 1114.90083 · doi:10.1007/s10957-004-1712-8
[12] Dinh, N., Mordukhovich, B.S., Nghia, T.T.A.: Subdifferentials of value functions and optimality conditions for some classes of DC and bilevel infinite and semi-infinite programs. Research Report # 4, Department of Mathematics, Wayne State University, Detroit, Michigan (2008) (to appear in Math. Program.) · Zbl 1226.90102
[13] Dinh, N., Nghia, T.T.A., Vallet, G.: A closedness condition and its applications to DC programs with convex constraints. Optimization, 1-20, iFirst (2008) doi: 10.1080/02331930801951348 First Published on: 31 March 2008 http://www.informaworld.com/smpp/title$\sim$content=g770174694$\sim$db=all?stem=3#messages · Zbl 1218.90155
[14] Dinh N., Vallet G., Nghia T.T.A.: Farkas-type results and duality for DC programs with convex constraints. J. Convex Anal. 15, 235--262 (2008) · Zbl 1145.49016
[15] Fang, D.H., Li, C., Ng, K.F.: Constraint qualifications for extended Farkas’ lemmas and Lagrangian dualities in convex infinite programming (Submitted). · Zbl 1206.90198
[16] Fukushima, M.: A class of gap functions for quasi-variational inequality problems (Preprint) · Zbl 1170.90487
[17] Hiriart-Urruty J.B.: From convex optimization to non-convex optimization necessary and sufficient conditions for global optimality. In: Gilbert, R.P., Panagiotopoulos, P.D., Pardalos, P.M. (eds) From Convexity to Non-convexity, pp. 219--239. Kluwer, London (2001) · Zbl 0735.90056
[18] Jacinto F.M.O., Scheimberg S.: Duality for generalized equilibrium problems. Optimization 57, 795--805 (2008) · Zbl 1152.90648 · doi:10.1080/02331930701761458
[19] Jeyakumar V.: Asymptotic dual conditions characterizing optimality for convex programs. J. Optim. Theory Appl. 93, 153--165 (1997) · Zbl 0901.90158 · doi:10.1023/A:1022606002804
[20] Jeyakumar, V., Dinh, N., Lee, G.M.: A new closed cone constraint qualification for convex optimization. Applied Mathematics research report AMR04/8, UNSW, Sydney, Australia (2004).
[21] Jeyakumar V., Wu Z.Y., Lee G.M., Dinh N.: Liberating the subgradient optimality conditions from constraint qualifications. J. Glob. Optim. 34, 127--137 (2006) · Zbl 1131.90069 · doi:10.1007/s10898-006-9003-6
[22] Laghdir M.: Optimality conditions and Toland’s duality for a non-convex minimization problem. Matematicki Vesnik 55, 21--30 (2003) · Zbl 1051.49020
[23] Martinez-Legaz J.E., Sosa W.: Duality for equilibrium problems. J. Glob. Optim. 25, 311--319 (2006) · Zbl 1106.90074 · doi:10.1007/s10898-005-3840-6
[24] Mastroeni G.: Gap functions for equilibrium. J. Glob. Optim. 27, 411--426 (2003) · Zbl 1061.90112 · doi:10.1023/A:1026050425030
[25] Mosco U.: Dual variational inequalities. J. Math. Anal. Appl. 40, 202--206 (1972) · Zbl 0262.49003 · doi:10.1016/0022-247X(72)90043-1
[26] Muu L.D., Nguyen V.H., Quy N.V.: Nash-Cournot oligopolistic market equilibrium models with concave cost functions. J. Glob. Optim. 41, 351--364 (2008) · Zbl 1146.91029 · doi:10.1007/s10898-007-9243-0
[27] Toland J.F.: Duality in non-convex optimization. J. Math. Anal. Appl. 66, 399--415 (1978) · Zbl 0403.90066 · doi:10.1016/0022-247X(78)90243-3
[28] Zalinescu C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)