Global convergence of some modified PRP nonlinear conjugate gradient methods. (English) Zbl 1228.90153

Summary: Recently, similar to [W. W. Hager and H. Zhang, SIAM J. Optim. 16, No. 1, 170–192 (2005; Zbl 1093.90085)], G. H. Yu [Nonlinear self-scaling conjugate gradient methods for large-scale optimization problems. PhD-Thesis, Sun Yat-Sen University (2007)] and G. Yuan [Optim. Lett. 3, No. 1, 11–21 (2009; Zbl 1154.90623)] proposed modified PRP conjugate gradient methods which generate sufficient descent directions without any line searches. In order to obtain the global convergence of their algorithms, they need the assumption that the stepsize is bounded away from zero. In this paper, we take a little modification to these methods such that the modified methods retain sufficient descent property. Without requirement of the positive lower bound of the stepsize, we prove that the proposed methods are globally convergent. Some numerical results are also reported.


90C52 Methods of reduced gradient type
90C30 Nonlinear programming


Full Text: DOI


[1] Hestenes M.R., Stiefel E.L.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. Sect. B 49, 409–432 (1952) · Zbl 0048.09901
[2] Fletcher R., Reeves C.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964) · Zbl 0132.11701
[3] Polak B., Ribiére G.: Note surla convergence des méthodes de directions conjuguées. Rev. Fr. Inf. Rech. Operatonelle 3e Année 16, 35–43 (1969)
[4] Polyak B.T.: The conjugate gradient method in extreme problems. USSR Comput. Math. Math. Phys. 9, 94–112 (1969) · Zbl 0229.49023
[5] Dai Y., Yuan Y.: A nonlinear conjugate gradient with a strong global convergence properties. SIAM J. Optim. 10, 177–182 (2000) · Zbl 0957.65061
[6] AL-Baali M.: Descent property and global convergence of the Fletcher–Reeves method with inexact line search. IMA J. Numer. Anal. 5, 121–124 (1985) · Zbl 0578.65063
[7] Dai Y., Yuan Y.: Convergence properties of the Fletcher–Reeves method. IMA J. Numer. Anal. 16(2), 155–164 (1996) · Zbl 0851.65049
[8] Gilbert J.C., Nocedal J.: Global convergence properties of conjugate gradient methods for optimization. SIAM. J. Optim. 2, 21–42 (1992) · Zbl 0767.90082
[9] Grippo L., Lucidi S.: A globally convergent version of the Polak–Ribiére gradient method. Math. Program. 78, 375–391 (1997) · Zbl 0887.90157
[10] Hager W.W., Zhang H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170–192 (2005) · Zbl 1093.90085
[11] Hager W.W., Zhang H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2, 35–58 (2006) · Zbl 1117.90048
[12] Yu, G.H.: Nonlinear self-scaling conjugate gradient methods for large-scale optimization problems. Thesis of Doctors Degree, Sun Yat-Sen University (2007)
[13] Yuan G.L.: Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems. Optim. Lett. 3, 11–21 (2009) · Zbl 1154.90623
[14] Zhang L., Zhou W., Li D.H.: Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search. Numer. Math. 104, 561–572 (2006) · Zbl 1103.65074
[15] Zhang L., Zhou W., Li D.H.: A descent modified Polak–Ribiére–Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26, 629–640 (2006) · Zbl 1106.65056
[16] Andrei N.: A Dai-Yuan conjugate gradient algorithm with sufficient descent and conjugacy conditions for unconstrained optimization. Applied Mathematics Letters. 21, 165–171 (2008) · Zbl 1165.90683
[17] Andrei N.: A hybrid conjugate gradient algorithm for unconstrained optimization as a convex combination of Hestenes–Stiefel and Dai–Yuan. Stud. Inf. Control 17, 55–70 (2008)
[18] Zhang, J., Xiao, Y., Wei, Z.: Nonlinear conjugate gradient methods with sufficient descent condition for large-scale unconstrained optimization. Math. Probl. Eng. Article ID 243290, 16 p. doi: 10.1155/2009/243290 (2009) · Zbl 1184.65066
[19] Bongartz K.E., Conn A.R., Gould N.I.M., Toint P.L.: CUTE: constrained and unconstrained testing environments. ACM Trans. Math. Softw. 21, 123–160 (1995) · Zbl 0886.65058
[20] Dolan E.D., Moré J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002) · Zbl 1049.90004
[21] Zoutendijk G.: Nonlinear programming computational methods. In: Abadie, J. (ed.) Integer and Nonlinear Programming, pp. 37–86. North-Holland, Amsterdam (1970) · Zbl 0336.90057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.