zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
LMI-based robust control of fractional-order uncertain linear systems. (English) Zbl 1228.93087
Summary: We are concerned with the method of observer-based control and static output feedback control for fractional-order uncertain systems with the fractional commensurate order $\alpha$($0<\alpha <1)$ and $\alpha$($1\le \alpha <2)$ via linear matrix inequality (LMI) approach, respectively. First, the sufficient conditions for robust asymptotical stability of the closed-loop control systems are presented. Next, by using matrix’s singular value decomposition (SVD) and LMI technics, the existence condition and method of designing a robust stabilizing controller for such fractional-order control systems are derived. Unlike previous methods, the results are obtained in terms of LMI, which can be easily obtained by Matlab’s LMI toolbox. Finally, two numerical examples demonstrate the validity of this approach.

93D05Lyapunov and other classical stabilities of control systems
34A08Fractional differential equations
93C42Fuzzy control systems
Full Text: DOI
[1] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[2] Hilfer, R.: Application of fractional calculus in physics, (2000) · Zbl 0998.26002
[3] Ortigueira, M. D.; Machado, J. A. T.: Special issue on fractional signal processing and applications, Signal processing 83, No. 11, 2285-2480 (2003)
[4] Zhou, Y.; Jiao, F.: Existence of mild solutions for fractional neutral evolution equations, Computer and mathematics with applications 59, 1063-1077 (2010) · Zbl 1189.34154 · doi:10.1016/j.camwa.2009.06.026
[5] D. Matgnon, Stability result on fractional differential equations with applications to control processing, in: Proc. IMACS, IEEE-SMC, Lille, France, July 1996, pp. 963--968.
[6] Ladaci, S.; Loiseau, J. J.; Charef, A.: Fractional order adaptive high-gain controllers for a class of linear systems, Communications in nonlinear science and numerical simulation 13, 707-714 (2008) · Zbl 1221.93128 · doi:10.1016/j.cnsns.2006.06.009
[7] Hwanga, C.; Cheng, Y. C.: A numerical algorithm for stability testing of fractional delay systems, Automatica 42, 825-831 (2006) · Zbl 1137.93375 · doi:10.1016/j.automatica.2006.01.008
[8] Ahn, H. S.; Chen, Y. Q.: Necessary and sufficient stability condition of fractional-order interval linear systems, Automatica 44, No. 11, 2985-2988 (2008) · Zbl 1152.93455 · doi:10.1016/j.automatica.2008.07.003
[9] Li, Y.; Chen, Y. Q.; Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized mitta--Leffler stability, Computers and mathematics with applications 24, 1429-1468 (2009)
[10] Yakar, C.: Fractional differential equations in terms of comparison results and Lyapunov stability with initial time difference, Abstract and applied analysis 10, 1-16 (2010) · Zbl 1196.34010 · doi:10.1155/2010/762857
[11] Lazarević, M. P.; Spasić, A. M.: Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach, Mathematical and computer modelling 49, 475-481 (2009) · Zbl 1165.34408 · doi:10.1016/j.mcm.2008.09.011
[12] Wen, X. J.; Wu, Z. M.; Lu, J. G.: Stability analysis of a class of nonlinear fractional-order systems, IEEE transactions on circuits and systems II: Express briefs 55, No. 11, 1178-1183 (2008)
[13] I. N’doye, M. Zasadzinski, M. Darouach, N. Radhy, Observer-based control for fractional-order continuous-time systems, in: Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, PR China, December 16--18, 2009, pp. 1932--1938.
[14] I. N’Doye, M. Zasadzinski, N.E. Radhy, A. Bouaziz, Stabilization of a class of nonlinear affine fractional-order systems using generalizations of Bellman--Gronwall lemma, in: 17th Mediterranean Conference on Control and Automation, Makedonia Palace, Thessaloniki, Greece, June 24--26, 2009, pp. 324--330.
[15] Tavazoei, M. S.; Haeri, M.: A note on the stability of fractional order systems, Mathematics and computers in simulation 79, 1566-1576 (2009) · Zbl 1168.34036 · doi:10.1016/j.matcom.2008.07.003
[16] Sabatier, J.; Moze, M.; Farges, C.: LMI stability conditions for fractional order systems, Computers and mathematics with applications 59, 1594-1609 (2010) · Zbl 1189.34020 · doi:10.1016/j.camwa.2009.08.003
[17] Lu, J. G.; Chen, Y. Q.: Robust stability and stabilization of fractional-order interval systems with the fractional order: the case $0{\alpha}$1, IEEE transactions on automatic control 55, No. 1, 152-159 (2010)
[18] Lu, J. G.; Chen, G. R.: Robust stability and stabilization of fractional-order interval systems: an LMI approach, IEEE transactions on automatic control 54, No. 6, 1294-1299 (2009)
[19] Zhou, K.; Doyle, J.; Glover, K.: Robust and optimal control, (1996) · Zbl 0999.49500
[20] Xie, L.: Output feedback H$\infty $ control of systems with parameter uncertainty, International journal of control 63, 741-752 (1996) · Zbl 0841.93014 · doi:10.1080/00207179608921866
[21] Chilali, M.; Gahinet, P.; Apkarian, P.: Robust pole placement in LMI regions, IEEE transactions on automatic control 44, No. 12, 2257-2270 (1999) · Zbl 1136.93352 · doi:10.1109/9.811208
[22] Boyd, S.; Ghaoui, L.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory, SIAM studies in applied mathematics 15 (1994) · Zbl 0816.93004
[23] Petersen, I. R.: A stabilization algorithm for a class of uncertain linear systems, Systems control letters 8, 351-357 (1987) · Zbl 0618.93056
[24] Macduffee, C. C.: The theory of matrices, (2004) · Zbl 0007.19507
[25] Oustaloup, A.; Levron, F.; Mathieu, B.; Nanot, F. M.: Frequency-band complex non-integer differentiator: characterization and synthesis, IEEE transactions on circuits and systems I: Fundamental theory and applications 47, No. 1, 25-39 (2000)