On analytical solutions of matrix Riccati equations. (English. Russian original) Zbl 1228.93099

Proc. Steklov Inst. Math. 273, 214-228 (2011); translation from Tr. Mat. Inst. Steklova 273, 231-246 (2011).
Summary: Matrix Riccati equations appear in numerous applications, especially in control engineering. In this paper we derive analytical formulas for exact solutions of algebraic and differential matrix Riccati equations. These solutions are expressed in terms of matrix transfer functions of appropriate linear dynamical systems.


93D15 Stabilization of systems by feedback
93B17 Transformations
34H05 Control problems involving ordinary differential equations
Full Text: DOI


[1] B. D. O. Anderson and J. B. Moore, Linear Optimal Control (Prentice-Hall, Englewood Cliffs, NJ, 1971). · Zbl 0321.49001
[2] R. W. Brockett, Finite Dimensional Linear Systems (J. Wiley & Sons, New York, 1970).
[3] F. H. Clarke, Optimization and Nonsmooth Analysis (J. Wiley & Sons, New York, 1983).
[4] F. H. Clarke, Methods of Dynamic and Nonsmooth Optimization (SIAM, Philadelphia, PA, 1989), CBMS-NSF Reg. Conf. Ser. Appl. Math. 57. · Zbl 0696.49003
[5] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth Analysis and Control Theory (Springer, New York, 1998). · Zbl 1047.49500
[6] F. H. Clarke and R. B. Vinter, ”The Relationship between the Maximum Principle and Dynamic Programming,” SIAM J. Control Optim. 25(5), 1291–1311 (1987). · Zbl 0642.49014
[7] R. V. Gamkrelidze, Principles of Optimal Control Theory (Plenum Press, New York, 1978). · Zbl 0401.49001
[8] R. E. Kalman, ”Contributions to the Theory of Optimal Control,” Bol. Soc. Mat. Mex., Ser. 2, 5, 102–119 (1960). · Zbl 0112.06303
[9] P. Lancaster and L. Rodman, Algebraic Riccati Equations (Clarendon Press, Oxford, 1995). · Zbl 0836.15005
[10] Yu. S. Ledyaev, ”On Generic Existence and Uniqueness in Nonconvex Optimal Control Problems,” Set-Valued Anal. 12(1–2), 147–162 (2004). · Zbl 1047.49020
[11] G. A. Leonov and M. M. Shumafov, Problems of Stabilization of Linear Control Systems (St.-Petersburg Univ., St.-Petersburg, 2005) [in Russian]. · Zbl 1102.65073
[12] A. M. Letov, ”The Analytical Design of Control Systems,” Avtom. Telemekh. 22(4), 425–435 (1961) [Autom. Remote Control 22, 363–372 (1961)]. · Zbl 0103.07303
[13] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Fizmatgiz, Moscow, 1961; J. Wiley & Sons, New York, 1962).
[14] W. T. Reid, Riccati Differential Equations (Academic Press, New York, 1972). · Zbl 0254.34003
[15] D. V. Widder, The Laplace Transform (Princeton Univ. Press, Princeton, NJ, 1941). · Zbl 0063.08245
[16] B. H. Willis and R. W. Brockett, ”The Frequency Domain Solution of Regulator Problems,” IEEE Trans. Autom. Control AC-10, 262–267 (1965).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.