×

A computational and combinatorial exposé of plethystic calculus. (English) Zbl 1229.05275

Summary: In recent years, plethystic calculus has emerged as a powerful technical tool for studying symmetric polynomials. In particular, some striking recent advances in the theory of Macdonald polynomials have relied heavily on plethystic computations. The main purpose of this article is to give a detailed explanation of a method for finding combinatorial interpretations of many commonly occurring plethystic expressions, which utilizes expansions in terms of quasisymmetric functions. To aid newcomers to plethysm, we also provide a self-contained exposition of the fundamental computational rules underlying plethystic calculus. Although these rules are well-known, their proofs can be difficult to extract from the literature. Our treatment emphasizes concrete calculations and the central role played by evaluation homomorphisms arising from the universal mapping property for polynomial rings.

MSC:

05E05 Symmetric functions and generalizations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agaoka, Y.: An algorithm to calculate the plethysms of Schur functions. Mem. Fac. Integr. Arts Sci. Hiroshima Univ. IV 21, 1–17 (1995)
[2] Atiyah, M.: Power operations in K-theory. Quart. J. Math. 17, 165–193 (1966) · Zbl 0144.44901 · doi:10.1093/qmath/17.1.165
[3] Atiyah, M., Tall, D.: Group representations, {\(\lambda\)}-rings, and the J-homomorphism. Topology 8, 253–297 (1969) · doi:10.1016/0040-9383(69)90015-9
[4] Bergeron, F., Bergeron, N., Garsia, A., Haiman, M., Tesler, G.: Lattice diagram polynomials and extended Pieri rules. Adv. Math. 2, 244–334 (1999) · Zbl 0934.05122 · doi:10.1006/aima.1998.1791
[5] Bergeron, F., Garsia, A.: Science fiction and Macdonald polynomials. In: CRM Proceedings and Lecture Notes AMS VI, vol. 3, pp. 363–429 (1999) · Zbl 0947.20009
[6] Bergeron, F., Garsia, A., Haiman, M., Tesler, G.: Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions. Methods Appl. Anal. VII 3, 363–420 (1999) · Zbl 0956.33011
[7] Bourbaki, N.: Elements of Mathematics: Algebra II. Springer, Berlin (1990), Chaps. 4–7 · Zbl 0719.12001
[8] Carvalho, M., D’Agostino, S.: Plethysms of Schur functions and the shell model. J. Phys. A: Math. Gen. 34, 1375–1392 (2001) · Zbl 0963.05132 · doi:10.1088/0305-4470/34/7/311
[9] Chen, Y., Garsia, A., Remmel, J.: Algorithms for plethysm. In: Greene, C. (ed.) Combinatorics and Algebra. Contemp. Math., vol. 34, pp. 109–153 (1984) · Zbl 0556.20013
[10] Duncan, D.: On D.E. Littlewood’s algebra of S-functions. Can. J. Math. 4, 504–512 (1952) · Zbl 0048.01103 · doi:10.4153/CJM-1952-045-3
[11] Foulkes, H.: Concomitants of the quintic and sextic up to degree four in the coefficients of the ground form. J. Lond Math. Soc. 25, 205–209 (1950) · Zbl 0037.14902 · doi:10.1112/jlms/s1-25.3.205
[12] Garsia, A.: Lecture notes from 1998 (private communication)
[13] Garsia, A., Haglund, J.: A proof of the q,t-Catalan positivity conjecture. Discrete Math. 256, 677–717 (2002) · Zbl 1028.05115 · doi:10.1016/S0012-365X(02)00343-6
[14] Garsia, A., Haglund, J.: A positivity result in the theory of Macdonald polynomials. Proc. Natl. Acad. Sci. 98, 4313–4316 (2001) · Zbl 1066.05144 · doi:10.1073/pnas.071043398
[15] Garsia, A., Haiman, M.: A remarkable q,t-Catalan sequence and q-Lagrange inversion. J. Algebr. Comb. 5, 191–244 (1996) · Zbl 0853.05008 · doi:10.1023/A:1022476211638
[16] Garsia, A., Haiman, M., Tesler, G.: Explicit plethystic formulas for Macdonald q,t-Kostka coefficients. In: Sém. Lothar. Combin., vol. 42, article B42m (1999), 45 pp. · Zbl 0920.05071
[17] Garsia, A., Remmel, J.: Plethystic formulas and positivity for q,t-Kostka coefficients. In: Progr. Math., vol. 161, pp. 245–262 (1998) · Zbl 0910.05067
[18] Garsia, A., Tesler, G.: Plethystic formulas for Macdonald q,t-Kostka coefficients. Adv. Math. 123, 144–222 (1996) · Zbl 0865.05075 · doi:10.1006/aima.1996.0071
[19] Geissenger, L.: Hopf Algebras of Symmetric Functions and Class Functions. Lecture Notes in Math., vol. 579. Springer, Berlin (1976)
[20] Gessel, I.: Multipartite P-partitions and inner products of skew Schur functions. In: Combinatorics and Algebra (Boulder, Colo., 1983). Contemp. Math., vol. 34, pp. 289–317 (1984)
[21] Grothendieck, A.: La theorie des classes de Chern. Bull. Soc. Math. Fr. 86, 137–154 (1958) · Zbl 0091.33201
[22] Haglund, J.: A proof of the q,t-Schröder conjecture. Int. Math. Res. Not. 11, 525–560 (2004) · Zbl 1069.05075 · doi:10.1155/S1073792804132509
[23] Haglund, J., Haiman, M., Loehr, N.: A combinatorial formula for Macdonald polynomials. J. Am. Math. Soc. 18, 735–761 (2005) · Zbl 1061.05101 · doi:10.1090/S0894-0347-05-00485-6
[24] Haglund, J., Haiman, M., Loehr, N., Remmel, J., Ulyanov, A.: A combinatorial formula for the character of the diagonal coinvariants. Duke Math. J. 126, 195–232 (2005) · Zbl 1069.05077 · doi:10.1215/S0012-7094-04-12621-1
[25] Hoffman, P.: {\(\tau\)}-rings and Wreath Product Representations. Lecture Notes in Math., vol. 706. Springer, Berlin (1979) · Zbl 0443.55013
[26] Ibrahim, E.: On D.E. Littlewood’s algebra of S-functions. Proc. Am. Math. Soc. 7, 199–202 (1956) · Zbl 0071.25003
[27] James, G., Kerber, A.: The Representation Theory of the Symmetric Group. Encyclopedia of Math. and Its Appl., vol. 16. Addison-Wesley, Reading (1981) · Zbl 0491.20010
[28] Knutson, D.: {\(\lambda\)}-rings and the Representation Theory of the Symmetric Group. Lecture Notes in Math., vol. 308. Springer, Berlin (1976) · Zbl 0272.20008
[29] Lascoux, A.: Symmetric Functions & Combinatorial Operators on Polynomials. CBMS/AMS Lecture Notes, vol. 99 (2003) · Zbl 1039.05066
[30] Lascoux, A., Leclerc, B., Thibon, J.-Y.: Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties. J. Math. Phys. 38, 1041–1068 (1997) · Zbl 0869.05068 · doi:10.1063/1.531807
[31] Littlewood, D.: Invariant theory, tensors and, group characters. Philos. Trans. R. Soc. A 239, 305–365 (1944) · Zbl 0060.04402 · doi:10.1098/rsta.1944.0001
[32] Littlewood, D.: The Theory of Group Characters, 2nd edn. Oxford University Press, London (1950) · Zbl 0038.16504
[33] Macdonald, I.: A new class of symmetric functions. In: Actes du 20e Séminaire Lotharingien, vol. 372/S-20, pp. 131–171 (1988) · Zbl 0962.05507
[34] Macdonald, I.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, London (1995) · Zbl 0824.05059
[35] Murnagham, F.: On the analyses of {m}1 k } and {m}k}. Proc. Natl. Acad. Sci. 40, 721–723 (1954) · Zbl 0056.25705 · doi:10.1073/pnas.40.8.721
[36] Remmel, J.: The Combinatorics of Macdonald’s \(D_{n}^{1}\) operator. In: Sém. Lothar. Combin., article B54As (2006), 55 pp. · Zbl 1186.05122
[37] Sagan, B.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. Wadsworth and Brooks/Cole, Belmont (1991) · Zbl 0823.05061
[38] Stanley, R.: Enumerative Combinatorics, vol. 1. Cambridge University Press, Cambridge (1997)
[39] Stanley, R.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999)
[40] Uehara, H., Abotteen, E., Lee, M.-W.: Outer plethysms and {\(\lambda\)}-rings. Arch. Math. 46, 216–224 (1986) · Zbl 0608.20008 · doi:10.1007/BF01194186
[41] Wybourne, B.: Symmetry Principles and Atomic Spectroscopy, with Appendix and Tables by P.H. Butler. Wiley, New York (1970)
[42] Yang, M.: An algorithm for computing plethysm coefficients. Discrete Math. 180, 391–402 (1998) · Zbl 0895.05065 · doi:10.1016/S0012-365X(97)00127-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.