Motose, Kaoru Notes to the Feit-Thompson conjecture. II. (English) Zbl 1229.11004 Proc. Japan Acad., Ser. A 86, No. 8, 131-132 (2010). Feit and Thompson conjectured for distinct primes \(p < q\) that \(\frac{q^{p}-1}{q-1}\) never divides \(\frac{p^{q}-1}{p-1}\). The author proves this for \(p=3\) and \(q\not\equiv -1\pmod 9\); \(p=5\) and \(q=5l-1\) with \(5 \nmid l\).For Part I, see Proc. Japan Acad., Ser. A 85, No. 2, 16–17 (2009; Zbl 1228.11005). Reviewer: Florin Nicolae (Berlin) Cited in 1 ReviewCited in 1 Document MSC: 11A07 Congruences; primitive roots; residue systems Keywords:Feit-Thompson conjecture Citations:Zbl 1228.11005 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] T. M. Apostol, The resultant of the cyclotomic polynomials \(F_{m}(ax)\) and \(F_{n}(bx)\), Math. Comp. 29 (1975), 1-6. · Zbl 0298.12001 · doi:10.2307/2005456 [2] W. Feit and J. G. Thompson, A solvability criterion for finite groups and some consequences, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 968-970. · Zbl 0117.26801 · doi:10.1073/pnas.48.6.968 [3] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029. · Zbl 0124.26402 · doi:10.2140/pjm.1963.13.775 [4] R. K. Guy, Unsolved problems in number theory , Third edition, Springer, New York, 2004. · Zbl 1058.11001 [5] K. Ireland and M. Rosen, A classical introduction to modern number theory , Second edition, Springer, New York, 1990. · Zbl 0712.11001 [6] K. Motose, Notes to the Feit-Thompson conjecture, Proc. Japan Acad. Ser. A Math. Sci. 85 (2009), no. 2, 16-17. · Zbl 1228.11005 · doi:10.3792/pjaa.85.16 [7] N. M. Stephens, On the Feit-Thompson conjecture, Math. Comp. 25 (1971), 625. · Zbl 0218.10003 · doi:10.1090/S0025-5718-1971-0297686-1 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.