Even sets of (\(-4\))-curves on rational surface. (English) Zbl 1229.14030

An even set of \((-r)\)-curves on a smooth complex projective algebraic surface is a set of smooth irreducible disjoint rational curves \(C_1, \dots, C_n\) with self-intersection \(-r\) such that the linear equivalence class of the divisor \(C:=C_1+ \dots +C_n\) is divisible by \(2\) in the Picard group. The author studies rational surfaces \(X\) containing an even set of \((-4)\)-curves through the double cover \(\pi:S \to X\) branched along \(C\). Up to contracting \((-1)\)-curves on \(X\) disjoint from \(C\), she proves that \(S\) is minimal and \(S\) is either a \(K3\) surface, or a surface of Kodaira dimension \(\kappa(S)=1\) or \(2\). In every case it turns out that \(n\) is bounded, unlike what happens for even sets of \((-2)\)-curves. She proves that \(\kappa(S) \leq 1\) if and only if \(X\) is endowed with a not relatively minimal elliptic fibration, containing \(C_1, \dots , C_n\) in its singular fibers. Moreover, examples are produced for all possible values of \(n\) when \(X\) is a \(K3\) surface (\(1 \leq n \leq 10\) in this case).


14J26 Rational and ruled surfaces
14J17 Singularities of surfaces or higher-dimensional varieties
14J27 Elliptic surfaces, elliptic or Calabi-Yau fibrations
14C20 Divisors, linear systems, invertible sheaves
Full Text: arXiv Euclid


[1] W. Barth, C. Peters and A. Van de Ven: Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 4 , Springer, Berlin, 1984. · Zbl 0718.14023
[2] A. Beauville: Complex Algebraic Surfaces, London Mathematical Society Lecture Note Series 68 , Cambridge Univ. Press, Cambridge, 1983. · Zbl 0512.14020
[3] F.R. Cossec and I.V. Dolgachev: Enriques Surfaces, I, Progress in Mathematics 76 , Birkhäuser Boston, Boston, MA, 1989. · Zbl 0665.14017
[4] O. Debarre: Inégalités numériques pour les surfaces de type général , Bull. Soc. Math. France 110 (1982), 319-346. · Zbl 0543.14026
[5] M. De Franchis: Sugl’integrali di Picard relativi a una superficie doppia , Rend. Circ. Mat. Palermo 20 (1905), 331-334. · JFM 36.0491.01
[6] I. Dolgachev, M. Mendes Lopes and R. Pardini: Rational surfaces with many nodes , Compositio Math. 132 (2002), 349-363. · Zbl 1059.14050
[7] I.V. Dolgachev and D.-Q. Zhang: Coble rational surfaces , Amer. J. Math. 123 (2001), 79-114. · Zbl 1056.14054
[8] B. Harbourne and W.E. Lang: Multiple fibers on rational elliptic surfaces , Trans. Amer. Math. Soc. 307 (1988), 205-223. · Zbl 0674.14027
[9] E. Horikawa: Algebraic surfaces of general type with small \(c^{2}_{1}\) , V, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 745-755 (1982). · Zbl 0505.14028
[10] Y. Lee and J. Park: A simply connected surface of general type with \(p_{g}=0\) and \(K^{2}=2\) , Invent. Math. 170 (2007), 483-505. · Zbl 1126.14049
[11] Y. Miyaoka: The maximal number of quotient singularities on surfaces with given numerical invariants , Math. Ann. 268 (1984), 159-171. · Zbl 0521.14013
[12] Y. Miyaoka: On the Chern numbers of surfaces of general type , Invent. Math. 42 (1977), 225-237. · Zbl 0374.14007
[13] M. Reid: Chapters on algebraic surfaces ; in Complex Algebraic Geometry (Park City, UT, 1993), IAS/Park City Math. Ser. 3 , Amer. Math. Soc., Providence, RI, 3-159, 1997. · Zbl 0910.14016
[14] G. Xiao: Fibered algebraic surfaces with low slope , Math. Ann. 276 (1987), 449-466. · Zbl 0596.14028
[15] D.-Q. Zhang: Quotients of K3 surfaces modulo involutions , Japan. J. Math. (N.S.) 24 (1998), 335-366. · Zbl 0958.14027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.