Varagnolo, M.; Vasserot, E. Canonical bases and KLR-algebras. (English) Zbl 1229.17019 J. Reine Angew. Math. 659, 67-100 (2011). Let \(_{\mathcal{A}}\mathbf{f}\) be Lusztig’s integral form of the negative half of the quantum universal enveloping algebra associated with a quiver \(\Gamma\). There is an isomorphism between \(_{\mathcal{A}}\mathbf{f}\) and the direct sum of Grothendieck groups of the categories of graded finitely generated modules over certain Khovanov-Lauda-Rouquier algebras. It the present paper the authors show that this isomorphism maps the canonical basis of \(_{\mathcal{A}}\mathbf{f}\) to classes of indecomposable projective modules. Reviewer: Volodymyr Mazorchuk (Uppsala) Cited in 5 ReviewsCited in 110 Documents MSC: 17B37 Quantum groups (quantized enveloping algebras) and related deformations 16E30 Homological functors on modules (Tor, Ext, etc.) in associative algebras Keywords:Khovanov-Lauda-Rouquier algebra; canonical basis; categorification; quantum group; Cartan datum; Yoneda extension algebra; quantum universal enveloping algebra × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Beilinson A., Astérisque 100 pp 5– (1982) [2] DOI: 10.1007/BF02685881 · Zbl 0237.14003 · doi:10.1007/BF02685881 [3] DOI: 10.1007/s002220050197 · Zbl 0897.22009 · doi:10.1007/s002220050197 [4] DOI: 10.1006/jabr.1997.7346 · Zbl 0914.18008 · doi:10.1006/jabr.1997.7346 [5] DOI: 10.1007/BF02699129 · Zbl 0699.22026 · doi:10.1007/BF02699129 [6] DOI: 10.1090/S0894-0347-1991-1088333-2 · doi:10.1090/S0894-0347-1991-1088333-2 [7] Lusztig G., Canad. Math. Soc. Conf. Proc. 16 pp 217– (1995) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.