Liu, Jia-quan; Wang, Ya-qi; Wang, Zhi-Qiang Soliton solutions for quasilinear Schrödinger equations. II. (English) Zbl 1229.35268 J. Differ. Equations 187, No. 2, 473-493 (2003). Summary: For a class of quasilinear Schrödinger equations, we establish the existence of ground states of soliton-type solutions by a variational method.For Part I see [J. Liu and Z. Wang, Proc. Am. Math. Soc. 131, No. 2, 441–448 (2003; Zbl 1229.35269)]. Cited in 5 ReviewsCited in 322 Documents MSC: 35Q55 NLS equations (nonlinear Schrödinger equations) 35Q51 Soliton equations Keywords:standing waves; quasilinear Schrödinger equations; Orlicz spaces; minimax methods Citations:Zbl 1229.35269 PDF BibTeX XML Cite \textit{J.-q. Liu} et al., J. Differ. Equations 187, No. 2, 473--493 (2003; Zbl 1229.35268) Full Text: DOI OpenURL References: [1] Ambrosetti, A.; Rabinowitz, P., Dual variational methods in critical point theory, J. funct. anal., 14, 349-381, (1973) · Zbl 0273.49063 [2] Arcoya, D.; Boccardo, L., Critical points for multiple integrals of the calculus of variations, Arch. rational mech. anal., 134, 249-274, (1996) · Zbl 0884.58023 [3] Arcoya, D.; Boccardo, L., Some remarks on critical point theory for nondifferentiable functionals, Nonlinear differential equations appl., 6, 79-100, (1999) · Zbl 0923.35049 [4] Bartsch, T.; Wang, Z.-Q., Existence and multiplicity results for some superlinear elliptic problems on \( R\^{}\{n\}\), Comm. partial differential equations, 20, 1725-1741, (1995) · Zbl 0837.35043 [5] Bass, F.G.; Nasanov, N.N., Nonlinear electromagnetic spin waves, Phys. rep., 189, 165-223, (1990) [6] Berestycki, H.; Lions, P.L., Nonlinear scalar field equations, iexistence of a ground state, Arch. rational mech. anal., 82, 313-346, (1983) [7] Borovskii, A.V.; Galkin, A.L., Dynamical modulation of an ultrashort high-intensity laser pulse in matter, Jetp, 77, 562-573, (1993) [8] De Bouard, A.; Hayashi, N.; Saut, J.-C., Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Comm. math. phys., 189, 73-105, (1997) · Zbl 0948.81025 [9] Brandi, H.S.; Manus, C.; Mainfray, G.; Lehner, T.; Bonnaud, G., Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. fluids B, 5, 3539-3550, (1993) [10] Browder, F.E., Variational methods for nonlinear elliptic eigenvalue problems, Bull. amer. math. soc., 71, 176-183, (1965) · Zbl 0135.15802 [11] Canino, A., Multiplicity of solutions for quasilinear elliptic equations, Topol. methods nonlinear anal., 6, 357-370, (1995) · Zbl 0863.35038 [12] Chen, X.L.; Sudan, R.N., Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse, Phys. rev. lett., 70, 2082-2085, (1993) [13] Corvellec, J.; Degiovanni, M.; Marzocchi, M., Deformation properties for continuous functionals and critical point theory, Topol. methods nonlinear anal., 1, 151-171, (1993) · Zbl 0789.58021 [14] Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. funct. anal., 69, 397-408, (1986) · Zbl 0613.35076 [15] Hasse, R.W., A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. phys. B, 37, 83-87, (1980) [16] Kondrat’ev, V.; Shubin, M., Discreteness of spectrum for the Schrödinger operator on manifolds of bounded geometry, Operator theory: adv. appl., 110, 185-226, (1999) · Zbl 0985.58012 [17] Kosevich, A.M.; Ivanov, B.A.; Kovalev, A.S., Magnetic solitons, Phys. rep., 194, 117-238, (1990) [18] Kurihura, S., Large-amplitude quasi-solitons in superfluid films, J. phys. soc. jpn, 50, 3262-3267, (1981) [19] Laedke, E.W.; Spatschek, K.H.; Stenflo, L., Evolution theorem for a class of perturbed envelope soliton solutions, J. math. phys., 24, 2764-2769, (1983) · Zbl 0548.35101 [20] Lange, H.; Toomire, B.; Zweifel, P.F., Time-dependent dissipation in nonlinear Schrödinger systems, J. math. phys., 36, 1274-1283, (1995) · Zbl 0823.35159 [21] Litvak, A.G.; Sergeev, A.M., One dimensional collapse of plasma waves, JETP lett., 27, 517-520, (1978) [22] Liu, J.-Q.; Wang, Z.-Q., Soliton solutions for quasilinear Schrödinger equations, Proc. amer. math. soc., 131, 441-448, (2003) · Zbl 1229.35269 [23] Makhankov, V.G.; Fedyanin, V.K., Non-linear effects in quasi-one-dimensional models of condensed matter theory, Phys. rep., 104, 1-86, (1984) [24] Nakamura, A., Damping and modification of exciton solitary waves, J. phys. soc. jpn, 42, 1824-1835, (1977) [25] Poppenberg, M.; Schmitt, K.; Wang, Z.Q., On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. var. partial differential equations, 14, 329-344, (2002) · Zbl 1052.35060 [26] Porkolab, M.; Goldman, M.V., Upper hybrid solitons and oscillating two-stream instabilities, Phys. fluids, 19, 872-881, (1976) [27] Quispel, G.R.W.; Capel, H.W., Equation of motion for the Heisenberg spin chain, Physica A, 110, 41-80, (1982) [28] P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Conference Series in Mathematics, Vol. 65, American Mathematical Society, 1986. · Zbl 0609.58002 [29] Rao, M.M.; Ren, Z.D., Theory of Orlicz spaces, (1991), Marcel Dekker New York · Zbl 0724.46032 [30] Ritchie, B., Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. rev. E, 50, 687-689, (1994) [31] Strauss, W.A., Existence of solitary waves in higher dimensions, Comm. math. phys., 55, 149-162, (1977) · Zbl 0356.35028 [32] Takeno, S.; Homma, S., Classical planar Heisenberg ferromagnet, complex scalar fields and nonlinear excitations, Progr. theoret. phys., 65, 172-189, (1981) [33] Lions, P.-L., Concentration compactness principle in the calculus of variations. the limit case. part 1, Rev. mat. iberoamericana, 1.1, 145-201, (1985) · Zbl 0704.49005 [34] Willem, M., Minimax theorems, (1996), Birkhäuser Boston · Zbl 0856.49001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.