zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Weak and strong convergence theorems for nonspreading mappings in Hilbert spaces. (English) Zbl 1229.47117
Summary: We first obtain a weak mean convergence theorem of Baillon’s type for nonspreading mappings in a Hilbert space. Further, using an idea of mean convergence, we prove a strong convergence theorem for nonspreading mappings in a Hilbert space.

MSC:
47J25Iterative procedures (nonlinear operator equations)
47H09Mappings defined by “shrinking” properties
47H25Nonlinear ergodic theorems
WorldCat.org
Full Text: DOI
References:
[1] Baillon, J. -B.: Un théorème de type ergodique pour LES contractions non linéaires dans un espace de Hilbert, C. R. Acad. sci. Paris sér. A-B 280 (1975) · Zbl 0307.47006
[2] Mann, W. R.: Mean value methods in iteration, Proc. amer. Math. soc. 4, 506-510 (1953) · Zbl 0050.11603 · doi:10.2307/2032162
[3] Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces, J. math. Anal. appl. 67, 274-276 (1979) · Zbl 0423.47026 · doi:10.1016/0022-247X(79)90024-6
[4] Takahashi, W.: Convex analysis and approximation of fixed points, (2000) · Zbl 1089.49500
[5] Halpern, B.: Fixed points of nonexpanding maps, Bull. amer. Math. soc. 73, 957-961 (1967) · Zbl 0177.19101 · doi:10.1090/S0002-9904-1967-11864-0
[6] Wittmann, R.: Approximation of fixed points of nonexpansive mappings, Arch. math. 58, 486-491 (1992) · Zbl 0797.47036 · doi:10.1007/BF01190119
[7] Shioji, N.; Takahashi, W.: Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. amer. Math. soc. 125, 3641-3645 (1997) · Zbl 0888.47034 · doi:10.1090/S0002-9939-97-04033-1
[8] Shioji, N.; Takahashi, W.: A strong convergence theorem for asymptotically nonexpansive mappings in Banach spaces, Arch. math. (Basel) 72, 354-359 (1999) · Zbl 0940.47045 · doi:10.1007/s000130050343
[9] Nakajo, K.; Takahashi, W.: Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. math. Anal. appl. 279, 372-378 (2003) · Zbl 1035.47048 · doi:10.1016/S0022-247X(02)00458-4
[10] Kamimura, S.; Takahashi, W.: Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13, 938-945 (2002) · Zbl 1101.90083 · doi:10.1137/S105262340139611X
[11] Browder, F. E.: Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100, 201-225 (1967) · Zbl 0149.36301 · doi:10.1007/BF01109805
[12] Goebel, K.; Kirk, W. A.: Topics in metric fixed point theory, Cambridge studies in advanced mathematics 28 (1990) · Zbl 0708.47031
[13] Blum, E.; Oettli, W.: From optimization and variational inequalities to equilibrium problems, Math. student 63, 123-145 (1994) · Zbl 0888.49007
[14] Combettes, P. L.; Hirstoaga, S. A.: Equilibrium programming in Hilbert spaces, J. nonlinear convex anal. 6, 117-136 (2005) · Zbl 1109.90079
[15] Kohsaka, F.; Takahashi, W.: Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. math. (Basel) 91, 166-177 (2008) · Zbl 1149.47045 · doi:10.1007/s00013-008-2545-8
[16] Kohsaka, F.; Takahashi, W.: Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM J. Optim. 19, 824-835 (2008) · Zbl 1168.47047 · doi:10.1137/070688717
[17] Takahashi, W.: Fixed point theorems for new nonlinear mappings in a Hilbert space, J. nonlinear convex anal. 11, 79-88 (2010) · Zbl 1200.47078 · http://www.ybook.co.jp/online/jncae/vol11/p79.html
[18] Igarashi, T.; Takahashi, W.; Tanaka, K.: Weak convergence theorems for nonspreading mappings and equilibrium problems, Nonlinear analysis and optimization, 75-85 (2009)
[19] Matsushita, S.; Takahashi, W.: Weak and strong convergence theorems for relatively nonexpansive mappings in Banach spaces, Fixed point theory appl., 37-47 (2004) · Zbl 1088.47054 · doi:10.1155/S1687182004310089
[20] Matsushita, S.; Takahashi, W.: A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. approx. Theory 134, 257-266 (2005) · Zbl 1071.47063 · doi:10.1016/j.jat.2005.02.007
[21] Takahashi, W.: Introduction to nonlinear and convex analysis, (2009) · Zbl 1183.46001
[22] Takahashi, W.: Nonlinear functional analysis, (2000) · Zbl 0997.47002
[23] Iemoto, S.; Takahashi, W.: Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space, Nonlinear anal. 71, 2082-2089 (2009) · Zbl 1239.47054
[24] Itoh, S.; Takahashi, W.: The common fixed point theory of singlevalued mappings and multivalued mappings, Pacific J. Math. 79, 493-508 (1978) · Zbl 0371.47042
[25] Aoyama, K.; Kimura, Y.; Takahashi, W.; Toyoda, M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear anal. 67, 2350-2360 (2007) · Zbl 1130.47045 · doi:10.1016/j.na.2006.08.032
[26] Takahashi, W.; Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings, J. optim. Theory appl. 118, 417-428 (2003) · Zbl 1055.47052 · doi:10.1023/A:1025407607560
[27] Akatsuka, M.; Aoyama, K.; Takahashi, W.: Mean ergodic theorems for a sequence of nonexpansive mappings in Hilbert spaces, Sci. math. Jpn. 68, 233-239 (2008) · Zbl 1188.47047
[28] Takahashi, W.: A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. amer. Math. soc. 81, 253-256 (1981) · Zbl 0456.47054 · doi:10.2307/2044205
[29] Shimizu, T.; Takahashi, W.: Strong convergence theorem for asymptotically nonexpansive mappings, Nonlinear anal. 26, 265-272 (1996) · Zbl 0861.47030 · doi:10.1016/0362-546X(94)00278-P
[30] Shimizu, T.; Takahashi, W.: Strong convergence to common fixed points of families of nonexpansive mappings, J. math. Anal. appl. 211, 71-83 (1997) · Zbl 0883.47075 · doi:10.1006/jmaa.1997.5398