zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The computation of the square roots of circulant matrices. (English) Zbl 1229.65068
The authors construct the reduced forms of circulant matrices and quasi-skew circulant matrices. Then they show that the problem of computing the circulant square roots of a circulant matrix $A$ can be reduced to that of computing the square roots of two half size matrices $B-C$ and $B+C$. Two efficient algorithms are presented to compute their square roots. Those methods are faster than the traditional algorithm which is based on the Schur decomposition. They further consider circulant $H$-matrices with positive diagonal entries and develop two algorithms for computing their principal square roots. Those two algorithms are based on $LL$ iteration and the modified Schulz iterative method, respectively. Some numerical experiments are presented.

65F30Other matrix algorithms
15A24Matrix equations and identities
Full Text: DOI
[1] Davis, P. J.: Circulant matrices, (1994) · Zbl 0898.15021
[2] R.M. Gray, Toeplitz and circulant matrices: a review. Available from: <http://www-ee.stanford.edu/gray/toeplitz.pdf>.
[3] Gellai, B.: Determination of molecular symmetry coordinates using circulant matrices, Journal of molecular structure 1, 21-26 (1984)
[4] Gutiérrez-Gutiérrez, Jesuús: Positive integer powers of complex symmetric circulant matrices, Applied mathematics and computation 202, 877-881 (2008) · Zbl 1149.15021 · doi:10.1016/j.amc.2008.02.010
[5] Argiroffo, Gabriela R.; Bianchi, Silvia M.: On the set covering polyhedron of circulant matrices, Discrete optimization 6, 162-173 (2009) · Zbl 1203.90127 · doi:10.1016/j.disopt.2008.11.001
[6] Rojo, Oscar; Rojo, Héctor: Some results on symmetric circulant matrices and on symmetric centrosymmetric matrices, Linear algebra and its applications 392, 211-233 (2004) · Zbl 1063.15006 · doi:10.1016/j.laa.2004.06.013
[7] Argiroffo, Gabriela R.; Bianchi, Silvia M.: The nonidealness index of circulant matrices, Electronic notes in discrete mathematics 30, 195-200 (2008) · Zbl 05284998
[8] Higham, Nicholas J.: Functions of matrices: theory and computation, (2008) · Zbl 1167.15001
[9] Cross, G. W.; Lancaster, P.: Square roots of complex matrices, Linear algebra and its applications 1, 289-293 (1974) · Zbl 0283.15008 · doi:10.1080/03081087408817029
[10] Higham, Nicholas J.: Computing real square roots of a real matrix, Linear algebra and its applications 88 -- 89, 405-430 (1987) · Zbl 0625.65032 · doi:10.1016/0024-3795(87)90118-2
[11] Higham, Nicholas J.: Stable iterations fot the matrix square root, Numerical algorithms 15, 227-242 (1997) · Zbl 0884.65035 · doi:10.1023/A:1019150005407
[12] Johnson, Charles R.; Okubo, Kazuyoshi; Reams, Robert: Uniqueness of matrix square roots and an application, Linear algebra and its applications 323, 51-60 (2001) · Zbl 0976.15009 · doi:10.1016/S0024-3795(00)00243-3
[13] Liu, Z. Y.; Zhang, Y. L.; Ralha, Rui: Computing the square roots of matrices with central symmetry, Applied mathematics and computation 186, 715-726 (2007) · Zbl 1121.65045 · doi:10.1016/j.amc.2006.08.032
[14] Liu, Z. Y.; Chen, H. J.; Cao, H. D.: The computation of the principal square roots of centrosymmetric H-matrices, Applied mathematics and computation 175, 319-329 (2006) · Zbl 1093.65044 · doi:10.1016/j.amc.2005.07.029
[15] Ikramov, Khakim D.: Hamiltonian square roots of skew-Hamiltonian matrices revisited, Linear algebra and its applications 325, 01-107 (2001) · Zbl 0978.15010 · doi:10.1016/S0024-3795(00)00304-9
[16] Reams, Robert: Hadamard inverses, square roots and products of almost semidefinite matrices, Linear algebra and its applications 288, 5-43 (1999) · Zbl 0933.15006 · doi:10.1016/S0024-3795(98)10162-3
[17] Berman, Abraham; Plemmons, Robert J.: Nonnegative matrices in the mathematical sciences, (1979) · Zbl 0484.15016
[18] Golub, G. H.; Van Loan, C. F.: Matrix computations, (1996) · Zbl 0865.65009
[19] Lu, L.; Liu, Z. Y.: On the square root of an H-matrix with positive diagonal elements, Annals of operations research 103 (2001) · Zbl 1039.15006 · doi:10.1023/A:1012931928589
[20] Nicholas J. Higham, The test matrix toolbox for MATLAB (Version 3.0), Numerical Analysis Report 276, Manchester Centre for Computational Mathematics, Manchester, England, 1995.
[21] Tian, Zhaolu; Gu, Chuanqing: The iterative methods for centrosymmetric matrices, Applied mathematics and computation 187, No. 2, 902-911 (2007) · Zbl 1121.65035 · doi:10.1016/j.amc.2006.09.030
[22] Gu, Chuanqing; Tian, Zhaolu: On the HSS iteration methods for positive definite Toeplitz linear systems, Journal of computational and applied mathematics 224, No. 2, 709-718 (2009) · Zbl 1185.65055 · doi:10.1016/j.cam.2008.06.002
[23] Meyer, C. D.: Matrix analysis and applied linear algebra, (2000) · Zbl 0962.15001