zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bi-criteria evolution strategy in estimating weights from the AHP ratio-scale matrices. (English) Zbl 1229.65070
Summary: The problem of deriving weights from ratio-scale matrices in an analytic hierarchy process (AHP) is addressed by researchers worldwide. There are various ways to solve the problem that are generally grouped into simple matrix and optimization methods. All methods have received criticism regarding the accuracy of derived weights, and different criteria are in use to compare the weights obtained from different methods. Because the set of Pareto non-dominated solutions (weights) is unknown and for inconsistent matrices is indefinite, a bi-criterion optimization approach is proposed for manipulating such matrices. The problem-specific evolution strategy algorithm is implemented for a robust stochastic search over a feasible indefinite solution space. The fitness function is defined as a scalar vector function composed of the common error measure, i.e. the Euclidean distance and a minimum violation error that accounts for no violation of the rank ordering. The encoding scheme and other components of the search engine are adjusted to preserve the imposed constraints related to the required normalized values of the weights. The solutions generated by the proposed approach are compared with solutions obtained by five well-known prioritization techniques for three judgment matrices taken from the literature. In these and other test applications, the prioritization method that uses the entitled weights estimation by evolution strategy algorithm appears to be superior to other methods if only two, the most commonly used methods, are applied: the Euclidean distance and minimum violation exclusion criteria.

65F30Other matrix algorithms
Full Text: DOI
[1] Saaty, T. L.: Analytic hierarchy process, (1980) · Zbl 0587.90002
[2] Chu, A.; Kalaba, R.; Springam, K.: A comparison of two methods for determining the weights of belonging to fuzzy sets, Journal of optimization theory and applications 27, 531-541 (1979) · Zbl 0377.94002 · doi:10.1007/BF00933438
[3] Crawford, G.; Williams, C.: A note on the analysis of subjective judgement matrices, Journal of mathematical psychology 29, 387-405 (1985) · Zbl 0585.62183 · doi:10.1016/0022-2496(85)90002-1
[4] Mikhailov, L.: A fuzzy programming method for deriving priorities in the analytic hierarchy process, Journal of operational research society 51, 341-349 (2000) · Zbl 1055.90560
[5] Bryson, N.: A goal programming method for generating priorities vectors, Journal of operational research society 46, 641-648 (1995) · Zbl 0830.90001
[6] Bryson, N.; Joseph, A.: Generating consensus priority point vectors: a logarithmic goal programming approach, Computers and operations research 26, 637-643 (1999) · Zbl 0933.90036 · doi:10.1016/S0305-0548(98)00083-5
[7] Wang, Y. M.; Parkan, C.; Luo, Y.: Priority estimation in the AHP through maximization of correlation coefficient, Applied mathematical modeling 31, 2711-2718 (2007) · Zbl 1147.90362 · doi:10.1016/j.apm.2006.10.020
[8] Yuen, K. K. F.: Analytic hierarchy prioritization process in the AHP application development: a prioritization operator selection approach, Applied soft computing 10, 975-989 (2010)
[9] Golany, B.; Kress, M.: A multicriteria evaluation of methods for obtaining weights from ratio-scale matrices, European journal of operations research 69, 210-220 (1993) · Zbl 0800.90007 · doi:10.1016/0377-2217(93)90165-J
[10] L. Mikhailov, M.G. Singh, Comparison analysis of methods for deriving priorities in the analytic hierarchy process, in: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 1999, pp. 1037 -- 1042.
[11] Wang, Y. M.: An overview of priority methods of comparison matrix, Journal of decision making and decision support systems 5, 101-114 (1995)
[12] Ramanathan, R.: Data envelopment analysis for weight derivation and aggregation in the analytic hierarchy process, Computers and operations research 33, 1289-1307 (2006) · Zbl 1104.90307 · doi:10.1016/j.cor.2004.09.020
[13] Wang, Y. M.; Chin, K. S.: A new data envelopment analysis method for priority determination and group decision making in the analytic hierarchy process, European journal of operational research 195, 239-250 (2009) · Zbl 1161.90422 · doi:10.1016/j.ejor.2008.01.049
[14] Ramanathan, R.; Ramanathan, U.: A qualitative perspective to deriving weights from pairwise comparison matrices, Omega 38, 228-232 (2010)
[15] Wang, Y. M.; Parkan, C.; Luo, Y.: A linear programming method for generating the most favorable weights from a pairwise comparison matrix, Computers and operations research 35, 3918-3930 (2005) · Zbl 1278.90261
[16] Dong, Y.; Xua, Y.; Lic, H.; Daia, M.: A comparative study of the numerical scales and the prioritization methods in AHP, European journal of operational research 186, 229-242 (2008) · Zbl 1138.91373 · doi:10.1016/j.ejor.2007.01.044
[17] Hovanov, N. V.; Kolari, J. W.; Sokolov, M. V.: Deriving weights from general pairwise comparison matrices, Mathematical social sciences 55, 205-220 (2008) · Zbl 1137.91577 · doi:10.1016/j.mathsocsci.2007.07.006
[18] Vaidya, O. S.; Kumar, S.: Analytic hierarchy process: an overview of applications, European journal of operational research 169, 1-29 (2006) · Zbl 1077.90542 · doi:10.1016/j.ejor.2004.04.028
[19] L. Mikhailov, Multiple criteria optimisation approach to deriving priorities in the analytic hierarchy process, in: Proc. 7th ISAHP. Bali, Indonesia, 2003, pp. 337 -- 346.
[20] Srdjevic, B.: Combining different prioritization methods in AHP synthesis, Computers and operations research 32, 1897-1919 (2005) · Zbl 1075.90530
[21] D. Savic, Global and Evolutionary Optimization for Water Management Problems, General Assembly of the European-Union-of-Geosciences, Vienna, Austria, 24th -- 29th April 2005. Practical Hydroinformatics: Computational Intelligence and Technological Developments in Water Applications, vol. 68, 2008, pp. 231 -- 243.
[22] Holland, J. H.: Adaptation in natural and artificial systems, Ann arbor [MI] (1975)
[23] Goldberg, D. E.: Genetic algorithms, (1989) · Zbl 0748.68050
[24] I. Rechenberg, Cybernetic solution path of an experimental problem, Royal Aircraft Establishment, Library translation No. 1122, Farnborough, Hants, UK, 1965.
[25] Schwefel, H-P: Kybernetische evolution als strategie der experimentellen forschung in der stromungstechnik, (1965)
[26] Back, T.: Evolutionary algorithms in theory and practice, (1996) · Zbl 0877.68060
[27] Cai, J.; Thierauf, G.: Discrete structural optimization using evolution strategies, Neural networks and combinatorial optimization in civil and structural engineering (1993)
[28] Back, T.; Schutz, M.: Evolutionary strategies for mixed-integer optimization of optical multilayer systems, The Proceedings of the fourth annual conference on evolutionary programming, 33-51 (1995)
[29] Arnold, D. V.: Weighted multi recombination evolution strategies, Theoretical computer science 361, 18-37 (2006) · Zbl 1097.68029 · doi:10.1016/j.tcs.2006.04.003
[30] Hasancebi, O.: Adaptive evolution strategies in structural optimization: enhancing their computational performance with applications to large-scale structures, Computers and structures 86, 119-132 (2008)
[31] I. De Falco, A. Della Cioppa, A. Tarantino, Automatic classification of handsegmented image parts with differential evolution, in: F. Rothlauf et al. (Ed.), Proceedings of the EvoWorkshops 2006, LNCS 3907, 2006, pp. 403 -- 414.
[32] Paterlini, S.; Krink, T.: Differential evolution and particle swarm optimization in partitional clustering, Computation statistics and data analysis 50, No. 5, 1220-1247 (2005) · Zbl 05381624
[33] Nearchou, A. C.; Omirou, S. L.: Differential evolution for sequencing and scheduling optimization, Journal of heuristics 12, 395-411 (2006)
[34] Yasakethu, S. L. P.; Fernando, W. A. C.; Kondoz, A. M.: Rate controlling in off line 3D video coding using evolution strategy, IEEE transactions on consumer electronics 55, No. 1, 150-157 (2009)
[35] Li, J.; Su, L.; Cheng, C.: Finding pre-images via evolution strategies, Applied soft computing 11, 4183-4194 (2011)
[36] Zaharie, D.: Influence of crossover on the behavior of differential evolution algorithms, Applied soft computing 9, 1126-1138 (2009)
[37] Mallipeddia, R.; Suganthana, P. N.; Panb, Q. K.; Tasgetirenc, M. F.: Differential evolution algorithm with ensemble of parameters and mutation strategies, Applied soft computing 11, 1679-1696 (2011)
[38] Pan, Q-K.; Suganthan, P. N.; Wang, L.; Gao, L.; Mallipeddi, R.: A differential evolution algorithm with self-adapting strategy and control parameters, Computers and operations research 38, 394-408 (2011) · Zbl 1231.90383 · doi:10.1016/j.cor.2010.06.007
[39] D.L. Carroll, Genetic Algorithm (GA) Tips. <http://cuaerospace.com/carroll/gatips.html>.