zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sixth order derivative free family of iterative methods. (English) Zbl 1229.65080
A four-parameter family of sixth order convergent iterative methods for solving nonlinear scalar equations is developed. Methods of the family require evaluation of four functions per iteration. These methods are totally free of derivatives. Convergence analysis shows that the family is sixth order convergent, which is also verified through the numerical work. Though the methods are independent of derivatives, computational results demonstrate that family of methods are efficient and demonstrate equal or better performance as compared with other six order methods, and the classical Newton method.

65H05Single nonlinear equations (numerical methods)
Full Text: DOI
[1] Ostrowski, A. M.: Solutions of equations and system equations, (1960) · Zbl 0115.11201
[2] Traub, J. F.: Iterative methods for the solution of equations, (1977) · Zbl 0383.68041
[3] Argyros, I. K.; Chen, D.; Qian, Q.: The jarrat method in Banach space setting, J. comput. Appl. math. 51, 103-106 (1994) · Zbl 0809.65054 · doi:10.1016/0377-0427(94)90093-0
[4] Argyros, I. K.: Computational theory of iterative methods, Series: studies in computational mathematics 15 (2007) · Zbl 1147.65313
[5] Chun, C.: Construction of Newton-like iteration methods for solving nonlinear equations, Numer. math. 104, No. 3, 297-315 (2006) · Zbl 1126.65042 · doi:10.1007/s00211-006-0025-2
[6] Chun, C.; Ham, Y.: Some sixth-order variants of Ostrowski root-finding methods, Appl. math. Comput. 193, 389-394 (2003) · Zbl 1193.65055 · doi:10.1016/j.amc.2007.03.074
[7] Wang, X.; Kou, J.; Li, Y.: A variant of jarratt method with sixth-order convergence, Appl. math. Comput. 204, 14-19 (2008) · Zbl 1168.65346 · doi:10.1016/j.amc.2008.05.112
[8] Sharma, J. R.; Guha, R. K.: A family of modified Ostrowski methods with accelerated sixth order convergence, Appl. math. Comput. 190, 111-115 (2007) · Zbl 1126.65046 · doi:10.1016/j.amc.2007.01.009
[9] Neta, B.: A sixth-order family of methods for nonlinear equations, Int. J. Comput. math. 7, 157-161 (1979) · Zbl 0397.65032 · doi:10.1080/00207167908803166
[10] Grau-Sánchez, M.: Improvements of the efficiency of some three-step iterative like-Newton methods, Numer. math. 107, No. 1, 131-146 (2007) · Zbl 1123.65037 · doi:10.1007/s00211-007-0088-8
[11] Ren, H.; Wu, Q.; Bi, W.: New variants of jarratt’s method with sixth-order convergence, Numer. algorithm. 52, 585-603 (2009) · Zbl 1187.65052 · doi:10.1007/s11075-009-9302-3
[12] Hernández, M. A.: Second-derivative-free variant of the Chebyshev method for nonlinear equations, J. optim. Theory appl. 104, No. 3, 501-515 (2000) · Zbl 1034.65039 · doi:10.1023/A:1004618223538
[13] Hernández, M. A.: Chebyshev’s approximation algorithms, applications, Comput. math. Appl. 4, 433-445 (2001) · Zbl 0985.65058 · doi:10.1016/S0898-1221(00)00286-8
[14] Kou, J.; Li, Y.; Wang, X.: A uniparametric Chebyshev-type method free from second derivatives, Appl. math. Comput. 179, 296-300 (2006) · Zbl 1102.65055 · doi:10.1016/j.amc.2005.11.110
[15] Wu, Q. B.; Zhao, Y. Q.: The convergence theorem for a family deformed Chebyshev method in Banach space, Appl. math. Comput. 182, 1369-1376 (2006) · Zbl 1151.65051 · doi:10.1016/j.amc.2006.05.022
[16] Frontini, M.; Sormani, E.: Third-order methods from quadrature formulae for solving systems of nonlinear equations, Appl. math. Comput. 149, 771-782 (2004) · Zbl 1050.65055 · doi:10.1016/S0096-3003(03)00178-4
[17] Grau, M.; Dı&acute, J. L.; Az-Barrero: An improvement of the Euler -- Chebyshev iterative method, J. math. Anal. appl. 315, 1-7 (2006)
[18] Asaithambia, A.: A shooting method for nonlinear heat transfer using automatic differentiation, Appl. math. Comput. 180, 264-269 (2006) · Zbl 1106.65064 · doi:10.1016/j.amc.2005.12.011
[19] D.H. Bailey, High-precision floating-point arithmetic in scientific computation, computing in science and engineering, also report LBNL-57487 (2005). Available at: http://crd.lbl.gov/dhbailey/dhbpapers/.
[20] D.H. Bailey, J.M. Borwein, High-precision computation and mathematical physics, XII Advanced Computing and Analysis Techniques in Physics Research, LBNL-2160E, http://crd.lbl.gov/dhbailey/dhbpapers/.
[21] Maple 13.0. http://www.maplesoft.com/.
[22] Kou, J.; Li, Y.: On Chebyshev-type methods free from second derivative, Comm. numer. Method eng. 24, 1219-1225 (2008) · Zbl 1156.65045 · doi:10.1002/cnm.1027
[23] Kou, J.; Li, Y.: Modified Chebyshev’s method free from second derivative for non-linear equations, Appl. math. Comput. 187, No. 2, 1027-1032 (2007) · Zbl 1116.65055 · doi:10.1016/j.amc.2006.09.021
[24] ARPREC, C++/Fortran-90 arbitrary precision package, available at http://crd.lbl.gov/dhbailey/mpdist/.