×

zbMATH — the first resource for mathematics

Are scattering amplitudes dual to super Wilson loops? (English) Zbl 1229.81176
Summary: The MHV scattering amplitudes in planar \(N=4\) SYM are dual to bosonic light-like Wilson loops. We explore various proposals for extending this duality to generic non-MHV amplitudes. The corresponding dual object should have the same symmetries as the scattering amplitudes and be invariant to all loops under the chiral half of the \(N=4\) superconformal symmetry. We analyze the recently introduced supersymmetric extensions of the light-like Wilson loop (formulated in Minkowski space-time) and demonstrate that they have the required symmetry properties at the classical level only, up to terms proportional to field equations of motion. At the quantum level, due to the specific light-cone singularities of the Wilson loop, the equations of motion produce a nontrivial finite contribution which breaks some of the classical symmetries. As a result, the quantum corrections violate the chiral supersymmetry already at one loop, thus invalidating the conjectured duality between Wilson loops and non-MHV scattering amplitudes. We compute the corresponding anomaly to one loop and solve the supersymmetric Ward identity to find the complete expression for the rectangular Wilson loop at leading order in the coupling constant. We also demonstrate that this result is consistent with conformal Ward identities by independently evaluating corresponding one-loop conformal anomaly.

MSC:
81T13 Yang-Mills and other gauge theories in quantum field theory
81T25 Quantum field theory on lattices
81U05 \(2\)-body potential quantum scattering theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Drummond, J.M.; Henn, J.; Korchemsky, G.P.; Sokatchev, E., Dual superconformal symmetry of scattering amplitudes in \(N = 4\) super Yang-Mills theory, Nucl. phys. B, 828, 317, (2010) · Zbl 1203.81112
[2] Berkovits, N.; Maldacena, J.; Beisert, N.; Ricci, R.; Tseytlin, A.A.; Wolf, M., Dual superconformal symmetry from \(\operatorname{AdS} 5 \times \operatorname{S} 5\) superstring integrability, Jhep, Phys. rev. D, 78, 126004, (2008)
[3] Brink, L.; Lindgren, O.; Nilsson, B.E.W.; Mandelstam, S., Light cone superspace and the ultraviolet finiteness of the \(N = 4\) model, Nucl. phys. B, Nucl. phys. B, 213, 149, (1983)
[4] Nair, V.P., A current algebra for some gauge theory amplitudes, Phys. lett. B, 214, 215, (1988)
[5] Witten, E., Perturbative gauge theory as a string theory in twistor space, Commun. math. phys., 252, 189, (2004) · Zbl 1105.81061
[6] Broadhurst, D.J., Summation of an infinite series of ladder diagrams, Phys. lett. B, 307, 132, (1993)
[7] Drummond, J.M.; Henn, J.; Smirnov, V.A.; Sokatchev, E., Magic identities for conformal four-point integrals, Jhep, 0701, 064, (2007)
[8] Korchemskaya, I.A.; Korchemsky, G.P., Evolution equation for gluon Regge trajectory, Phys. lett. B, 387, 346, (1996)
[9] Korchemsky, G.P.; Drummond, J.M.; Sokatchev, E., Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. phys. B, 795, 385, (2008) · Zbl 1219.81227
[10] Alday, L.F.; Maldacena, J.M.; Alday, L.F.; Maldacena, J.M., Comments on gluon scattering amplitudes via AdS/CFT, Jhep, Jhep, 0711, 068, (2007) · Zbl 1245.81256
[11] Kallosh, R.; Tseytlin, A.A., Simplifying superstring action on \(\operatorname{AdS}(5) \times \operatorname{S}^5\), Jhep, 9810, 016, (1998)
[12] Brandhuber, A.; Heslop, P.; Travaglini, G., MHV amplitudes in \(N = 4\) super Yang-Mills and Wilson loops, Nucl. phys. B, 794, 231, (2008) · Zbl 1273.81201
[13] Drummond, J.M.; Henn, J.; Korchemsky, G.P.; Sokatchev, E., On planar gluon amplitudes/Wilson loops duality, Nucl. phys. B, 795, 52, (2008) · Zbl 1219.81191
[14] Drummond, J.M.; Henn, J.; Korchemsky, G.P.; Sokatchev, E., Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. phys. B, 826, 337, (2010) · Zbl 1203.81175
[15] Anastasiou, C.; Bern, Z.; Dixon, L.J.; Kosower, D.A., Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. rev. lett., 91, 251602, (2003)
[16] Bern, Z.; Dixon, L.J.; Smirnov, V.A., Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. rev. D, 72, 085001, (2005)
[17] Drummond, J.M.; Henn, J.; Korchemsky, G.P.; Sokatchev, E.; Drummond, J.M.; Henn, J.; Korchemsky, G.P.; Sokatchev, E., Hexagon Wilson loop = six-gluon MHV amplitude, Phys. lett. B, Nucl. phys. B, 815, 142, (2009) · Zbl 1194.81316
[18] Anastasiou, C.; Brandhuber, A.; Heslop, P.; Khoze, V.V.; Spence, B.; Travaglini, G., Two-loop polygon Wilson loops in \(N = 4\) SYM, Jhep, 0905, 115, (2009)
[19] Del Duca, V.; Duhr, C.; Smirnov, V.A.; Del Duca, V.; Duhr, C.; Smirnov, V.A., The two-loop hexagon Wilson loop in \(N = 4\) SYM, Jhep, Jhep, 1005, 084, (2010) · Zbl 1287.81080
[20] Goncharov, A.B.; Spradlin, M.; Vergu, C.; Volovich, A., Classical polylogarithms for amplitudes and Wilson loops, Phys. rev. lett., 105, 151605, (2010)
[21] Bern, Z.; Dixon, L.J.; Kosower, D.A.; Roiban, R.; Spradlin, M.; Vergu, C.; Volovich, A., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. rev. D, 78, 045007, (2008)
[22] Cachazo, F.; Spradlin, M.; Volovich, A., Leading singularities of the two-loop six-particle MHV amplitude, Phys. rev. D, 78, 105022, (2008)
[23] Mason, L.J.; Skinner, D., The complete planar S-matrix of N=4 SYM as a Wilson loop in twistor space, Jhep, 1012, 018, (2010) · Zbl 1294.81122
[24] Caron-Huot, S., Notes on the scattering amplitude/Wilson loop duality · Zbl 1298.81357
[25] Harnad, J.P.; Shnider, S.; Ooguri, H.; Rahmfeld, J.; Robins, H.; Tannenhauser, J., Holography in superspace, Commun. math. phys., Jhep, 0007, 045, (2000) · Zbl 0965.81070
[26] Arkani-Hamed, N.; Bourjaily, J.L.; Cachazo, F.; Caron-Huot, S.; Trnka, J., The all-loop integrand for scattering amplitudes in planar \(N = 4\) SYM, Jhep, 1101, 041, (2011) · Zbl 1214.81141
[27] Boels, R.H., On BCFW shifts of integrands and integrals, Jhep, 1011, 113, (2010) · Zbl 1294.81089
[28] Korchemskaya, I.A.; Korchemsky, G.P.; Bassetto, A.; Korchemskaya, I.A.; Korchemsky, G.P.; Nardelli, G., Gauge invariance and anomalous dimensions of a light cone Wilson loop in lightlike axial gauge, Phys. lett. B, Nucl. phys. B, 408, 62, (1993)
[29] Alday, L.F.; Eden, B.; Korchemsky, G.P.; Maldacena, J.; Sokatchev, E.; Eden, B.; Korchemsky, G.P.; Sokatchev, E.; Eden, B.; Korchemsky, G.P.; Sokatchev, E., More on the duality correlators/amplitudes · Zbl 1204.81127
[30] Eden, B.; Heslop, P.; Korchemsky, G.P.; Sokatchev, E.; Eden, B.; Heslop, P.; Korchemsky, G.P.; Sokatchev, E., The super-correlator/super-amplitude duality. part II · Zbl 1262.81197
[31] Hodges, A., Eliminating spurious poles from gauge-theoretic amplitudes · Zbl 1342.81291
[32] Belitsky, A.V.; Mueller, D., Superconformal constraints for QCD conformal anomalies, Phys. rev. D, 65, 054037, (2002)
[33] Bern, Z.; De Freitas, A.; Dixon, L.J.; Wong, H.L., Supersymmetric regularization, two loop QCD amplitudes and coupling shifts, Phys. rev. D, 66, 085002, (2002)
[34] Collins, J.C., Renormalization, (1984), Cambridge University Press Cambridge
[35] Kosower, D.A.; Roiban, R.; Vergu, C., The six-point NMHV amplitude in maximally supersymmetric Yang-Mills theory
[36] Belitsky, A.V.; Derkachov, S.E.; Korchemsky, G.P.; Manashov, A.N., Superconformal operators in \(N = 4\) super-Yang-Mills theory, Phys. rev. D, 70, 045021, (2004)
[37] Siegel, W.; Rocek, M., On off-shell supermultiplets, Phys. lett. B, 105, 275, (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.