zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Simplicial gauge theory and quantum gauge theory simulation. (English) Zbl 1229.81182
Summary: We propose a general formulation of simplicial lattice gauge theory inspired by the finite element method. Numerical tests of convergence towards continuum results are performed for several $SU(2)$ gauge fields. Additionally, we perform simplicial Monte Carlo quantum gauge field simulations involving measurements of the action as well as differently sized Wilson loops as functions of $\beta $.

81T13Yang-Mills and other gauge theories
81T25Quantum field theory on lattices
81V05Strong interaction, including quantum chromodynamics
35Q40PDEs in connection with quantum mechanics
65C05Monte Carlo methods
Full Text: DOI arXiv
[1] Yang, C. -N.; Mills, R. L.: Conservation of isotopic spin and isotopic gauge invariance, Phys. rev. 96, 191-195 (1954) · Zbl 06538052
[2] Weinberg, S.: The quantum theory of fields, vol. 1: foundations, (1995) · Zbl 0865.92026
[3] Weinberg, S.: The quantum theory of fields, vol. 2: modern applications, (1996) · Zbl 0959.81002
[4] Peskin, M. E.; Schroeder, D. V.: An introduction to quantum field theory, (1995)
[5] Wilson, K. G.: Confinement of quarks, Phys. rev. D 10, No. 8, 2445-2459 (1974)
[6] Creutz, M.: Quarks, gluons and lattices, Cambridge monographs on mathematical physics (1986)
[7] Christ, N. H.; Friedberg, R.; Lee, T. D.: Weights of links and plaquettes in a random lattice, Nucl. phys. B 210, 337 (1982)
[8] Christ, N. H.; Friedberg, R.; Lee, T. D.: Gauge theory on a random lattice, Nucl. phys. B 210, 310 (1982)
[9] Christ, N. H.; Friedberg, R.; Lee, T. D.: Random lattice field theory: general formulation, Nucl. phys. B 202, 89 (1982)
[10] Drouffe, J. M.; Moriarty, K. J. M.; Mouhas, C. N.: Monte Carlo simulation of pure $U(N)$ and $SU(N)$ gauge theories on a simplicial lattice, Comput. phys. Commun. 30, 249 (1983)
[11] Drouffe, J. M.; Moriarty, K. J. M.; Mouhas, C. N.: $U(1)$ four-dimensional gauge theory on a simplicial lattice, J. phys. G 10, 115 (1984)
[12] Drouffe, J. M.; Moriarty, K. J. M.: Gauge theories on a simplicial lattice, Nucl. phys. B 220, 253-268 (1983)
[13] Drouffe, J. M.; Moriarty, K. J. M.: $U(2)$ four-dimensional simplicial lattice gauge theory, Z. phys. C 24, 395 (1984)
[14] Cahill, K. E.; Reeder, R.: Comparison of the simplicial method with Wilson’s lattice gauge theory for $U(1)$ in three-dimensions, Phys. lett. B 168, 381 (1986)
[15] URL http://stacks.iop.org/0305-4616/10/i=10/a=001.
[16] Ardill, R. W. B.; Clarke, J. P.; Drouffe, J. M.; Moriarty, K. J. M.: Quantum chromodynamics on a simplicial lattice, Phys. lett. B 128, 203 (1983)
[17] Ciarlet, P. G.: The finite element method for elliptic problems, Studies in mathematics and its applications 4 (1978) · Zbl 0383.65058
[18] Monk, P.: Finite element methods for Maxwell’s equations, (2006) · Zbl 1099.35161
[19] Nédélec, J. -C.: Mixed finite elements in R3, Num. math. 35, 315-341 (1980) · Zbl 0419.65069 · doi:10.1007/BF01396415
[20] Whitney, H.: Geometric integration theory, (1957) · Zbl 0083.28204
[21] Hiptmair, R.: Finite elements in computational electromagnetism, Acta numerica 11, 237-339 (2002) · Zbl 1123.78320 · doi:10.1017/S0962492902000041
[22] Bender, C. M.; Milton, K. A.: Approximate determination of the mass gap in quantum field theory using the method of finite elements, Phys. rev. D 34, No. 10, 3149-3155 (1986)
[23] Bender, C. M.; Milton, K. A.; Sharp, D. H.: Gauge invariance and the finite-element solution of the Schwinger model, Phys. rev. D 31, No. 2, 383-388 (1985)
[24] Halvorsen, T. G.; Sorensen, T. M.: Simplicial gauge theory on spacetime
[25] Flyvbjerg, H.; Petersen, H. G.: Error estimates on averages of correlated data, Journal of chemical physics 91, No. 1, 461-466 (1989)
[26] Creutz, M.: Monte Carlo study of quantized $SU(2)$ gauge theory, Phys. rev. D 21, 2308-2315 (1980)
[27] Christiansen, S. H.; Munthe-Kaas, H. Z.; Owren, B.: Topics in structure-preserving discretization, Acta numerica 20, 1-119 (2011) · Zbl 1233.65087 · doi:10.1017/S096249291100002X
[28] MPICH2, URL http://www.mcs.anl.gov/mpi/mpich2.
[29] H. Bauke, TINA pseudo-RNG library, URL http://trng.berlios.de.