zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mean-variance hedging and forward-backward stochastic differential filtering equations. (English) Zbl 1229.91327
Summary: This paper is concerned with a mean-variance hedging problem with partial information, where the initial endowment of an agent may be a decision and the contingent claim is a random variable. This problem is explicitly solved by studying a linear-quadratic optimal control problem with non-Markov control systems and partial information. Then, we use the result as well as filtering to solve some examples in stochastic control and finance. Also, we establish backward and forward-backward stochastic differential filtering equations which are {\it different} from the classical filtering theory introduced by {\it R. S. Liptser} and {\it A. N. Shiryayev} [Statistics of random processes. I. General theory. Translated by A. B. Aries. Applications of Mathematics. 5. New York etc.: Springer- Verlag (1977; Zbl 0364.60004)], {\it J. Xiong} [An introduction to stochastic filtering theory. Oxford Graduate Texts in Mathematics 18. Oxford: Oxford University Press (2008; Zbl 1144.93003)], and so forth.

MSC:
91G20Derivative securities
49N10Linear-quadratic optimal control problems
60H30Applications of stochastic analysis
WorldCat.org
Full Text: DOI
References:
[1] M. Kohlmann and X. Zhou, “Relationship between backward stochastic differential equations and stochastic controls: a linear-quadratic approach,” SIAM Journal on Control and Optimization, vol. 38, no. 5, pp. 1392-1407, 2000. · Zbl 0960.60052 · doi:10.1137/S036301299834973X
[2] H. Pham, “Mean-variance hedging for partially observed drift processes,” International Journal of Theoretical and Applied Finance, vol. 4, no. 2, pp. 263-284, 2001. · Zbl 1153.91554 · doi:10.1142/S0219024901000985
[3] J. Xiong and X. Zhou, “Mean-variance portfolio selection under partial information,” SIAM Journal on Control and Optimization, vol. 46, no. 1, pp. 156-175, 2007. · Zbl 1142.91007 · doi:10.1137/050641132
[4] Y. Hu and B. Øksendal, “Partial information linear quadratic control for jump diffusions,” SIAM Journal on Control and Optimization, vol. 47, no. 4, pp. 1744-1761, 2008. · Zbl 1165.93037 · doi:10.1137/060667566
[5] R. S. Liptser and A. N. Shiryayev, Statistics of random processes, Springer, New York, NY, USA, 1977. · Zbl 0364.60004
[6] J. Xiong, An introduction to stochastic filtering theory, vol. 18, Oxford University Press, Oxford, UK, 2008. · Zbl 1144.93003
[7] G. Wang and Z. Wu, “Kalman-Bucy filtering equations of forward and backward stochastic systems and applications to recursive optimal control problems,” Journal of Mathematical Analysis and Applications, vol. 342, no. 2, pp. 1280-1296, 2008. · Zbl 1141.93070 · doi:10.1016/j.jmaa.2007.12.072
[8] G. Wang and Z. Wu, “The maximum principles for stochastic recursive optimal control problems under partial information,” IEEE Transactions on Automatic Control, vol. 54, no. 6, pp. 1230-1242, 2009. · doi:10.1109/TAC.2009.2019794
[9] J. Huang, G. Wang, and J. Xiong, “A maximum principle for partial information backward stochastic control problems with applications,” SIAM Journal on Control and Optimization, vol. 48, no. 4, pp. 2106-2117, 2009. · Zbl 1203.49037 · doi:10.1137/080738465
[10] A. Bensoussan, Stochastic control of partially observable systems, Cambridge University Press, Cambridge, UK, 1992. · Zbl 0795.35008 · doi:10.1007/BF01371084
[11] R. Merton, “Optimum consumption and portfolio rules in a continuous-time model,” Journal of Economic Theory, vol. 3, no. 4, pp. 373-413, 1971. · Zbl 1011.91502 · doi:10.1016/0022-0531(71)90038-X