zbMATH — the first resource for mathematics

Method of decomposition in mobile robot control. (English. Russian original) Zbl 1229.93027
Autom. Remote Control 72, No. 10, 2084-2099 (2011); translation from Avtom. Telemekh. 2011, No. 10, 86-103 (2011).
Summary: A complex of the problems of controlling the mobile wheel robots is solved in various formulations. A methodology of designing the generator of realizable driving actions is developed, that is, the question of feasibility analysis of the given trajectory stands no longer. Developed is a two-level decomposition procedure for designing a control system of the mobile two-wheel robot driving it to the desired trajectory and then along it with the prescribed velocity. Forced equation relating the linear and angular deviations enable a reduction of the design problem to elementary subproblems where the dimensions of the state vectors and controls coincide. Sliding-mode observers are used for informational support of the basic control laws, which enables one to establish the current estimates of the functional components and exogenous disturbances and simplifies substantially the computer-aided realization of the control algorithms. The results of modeling corroborate efficiency of the developed algorithms.

93B11 System structure simplification
68T40 Artificial intelligence for robotics
93C85 Automated systems (robots, etc.) in control theory
93B07 Observability
93B12 Variable structure systems
Full Text: DOI
[1] Handbook Springer of Robotics, Siciliano, B., et al., Eds., Berlin: Springer, 2008, pp. 391–410.
[2] Morozov, Yu.V. and Rapoport, L.B., Numerical Methods for Estimation of the Attraction Domain in the Problem of Control of the Wheeled Robot, Autom. Remote Control, 2008, vol. 69, no. 1, pp. 13–26. · Zbl 1156.93366 · doi:10.1134/S0005117908010025
[3] Sovremennaya prikladnaya teoriya upravleniya. Novye klassy regulyatorov tekhnicheskikh sistem. T. 3 (Modern Applied Control Theory. New Classes of Controllers of Technical Systems. Vol. 3), Kolesnikov, A.A., Ed., Taganrog: TRTU, 2000.
[4] Matyukhin, V.I., Upravlenie mekhanicheskimi sistemami (Control of Mechanical Systems), Moscow: Fizmatlit, 2009.
[5] Burdakov, S.F., Miroshnik, I.V., and Stel’makov, R.E., Sistemy upravleniya dvizheniem kolesnykh robotov (Control Systems of Wheel Robot Motion), St. Petersburg: Nauka, 2001.
[6] Utkin, V., Guldner, J., and Shi, J., Sliding Mode Control in Electromechanical systems New York: CRC Press, 2009.
[7] Dixon, W., Dawson, D.M., Zergeroglu, E., and Behal, A., Nonlinear Control of Wheeled Mobile Robots, Lecture Notes in Control and Information Sciences, vol. 262, Berlin: Springer, 2001. · Zbl 0994.93500
[8] Drakunov, S.V., Izosimov, D.B., Luk’yanov, A.G., Utkin, V.A., and Utkin, V.I., The Block Control Principle. I, II, Autom. Remote Control, 1990, vol. 51, no. 5, part 1, pp. 601–608; no. 6, part 1, pp. 737–746. · Zbl 0722.93021
[9] Utkin, V.A., Invariance and Independence in System with Separable Motion, Autom. Remote Control, 2001, vol. 62, no. 11, pp. 1825–1843. · Zbl 1093.93514 · doi:10.1023/A:1012790223645
[10] Krasnova, S.A., Utkin, V.A., and Mikheev, Yu.V., Cascade Design of State Observers for Nonlinear Multivariable Systems, Autom. Remote Control, 2001, vol. 62, no. 2, pp. 207–226. · Zbl 1092.93515 · doi:10.1023/A:1002890122128
[11] Krasnova, S.A. and Kuznetsov, S.I., Uncontrollable Perturbations of Nonlinear Dynamic Systems: Estimation on Moving Modes, Autom. Remote Control, 2005, vol. 66, no. 10, pp. 1580–1593. · Zbl 1126.93318 · doi:10.1007/s10513-005-0192-0
[12] Petrov, B.N., Zemlyakov, S.D., and Rutkovskii, V.Yu., Adaptivnoe koordinatno-parametricheskoe upravlenie nestatsionarnymi ob”ektami (Adaptive Coordinate-Parametric Control of Nonstationary Plants), Moscow: Nauka, 1980. · Zbl 0498.93002
[13] Utkin, A.V., Method of State Space Expansion in the Design of Autonomous Control, Autom. Remote Control, 2007, vol. 68, no. 6, pp. 1006–1022. · Zbl 1142.93340 · doi:10.1134/S0005117907060082
[14] Krasnova, S.A., Cascade Design of a Manipulator Control System with Consideration for Dynamics of Electric Drives, Autom. Remote Control, 2001, vol. 62, no. 11, pp. 1803–1824. · Zbl 1093.93530 · doi:10.1023/A:1012738206807
[15] Kochetkov, S.A. and Utkin, V.A., Compensating Unremovable Imperfections in Operation Units, Autom. Remote Control, 2010, vol. 71, no. 5, pp. 747–771. · Zbl 1218.93074 · doi:10.1134/S0005117910050036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.