×

zbMATH — the first resource for mathematics

Nonlinear Dirac operator and quaternionic analysis. (English) Zbl 1230.30034
Summary: Properties of the Cauchy-Riemann-Fueter equation for maps between quaternionic manifolds are studied. Spaces of solutions in case of maps from a K3-surface to the cotangent bundle of a complex projective space are computed. A relationship between harmonic spinors of a generalized nonlinear Dirac operator and solutions of the Cauchy-Riemann-Fueter equation are established.

MSC:
30G35 Functions of hypercomplex variables and generalized variables
53C26 Hyper-Kähler and quaternionic Kähler geometry, “special” geometry
35Q40 PDEs in connection with quantum mechanics
58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Anselmi D. and Fré P. (1994). Topological {\(\sigma\)}-models in four dimensions and triholomorphic maps. Nucl. Phys. B 416(1): 255–300 · Zbl 1007.53500
[2] Atiyah, M., Hitchin, N.: The geometry and dynamics of magnetic monopoles. M. B. Porter Lectures. Princeton, NJ: Princeton University Press, 1988 · Zbl 0671.53001
[3] Bagger J. and Witten E. (1983). Matter couplings in N = 2 supergravity. Nucl. Phys. B 222(1): 1–10
[4] Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact complex surfaces, Volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Berlin: Springer-Verlag, second edition, 2004 · Zbl 1036.14016
[5] Belcastro S.-M. (2002). Picard lattices of families of K3 surfaces. Comm. Alg. 30(1): 61–82 · Zbl 1053.14045
[6] Boyer C.P., Galicki K. and Mann B.M. (1993). Quaternionic reduction and Einstein manifolds. Comm. Anal. Geom. 1(2): 229–279 · Zbl 0856.53038
[7] Chen J. (1999). Complex anti-self-dual connections on a product of Calabi-Yau surfaces and triholomorphic curves. Commun. Math. Phys. 201(1): 217–247 · Zbl 0948.32027
[8] Chen J. and Li J. (2000). Quaternionic maps between hyperkähler manifolds. J. Differ. Geom. 55(2): 355–384 · Zbl 1067.53035
[9] Donaldson, S.K., Thomas, R.P.: Gauge theory in higher dimensions. In: The geometric universe (Oxford, 1996), Oxford: Oxford Univ. Press 1998, pp. 31–47 · Zbl 0926.58003
[10] Feix B. (2001). Hyperkahler metrics on cotangent bundles. J. Reine Angew. Math. 532: 33–46 · Zbl 0976.53049
[11] Figueroa-O’Farrill J.M., Köhl C. and Spence B. (1998). Supersymmetric Yang-Mills, octonionic instantons and triholomorphic curves. Nucl. Phys. B 521(3): 419–443 · Zbl 0954.53019
[12] Friedman, R.: Algebraic surfaces and holomorphic vector bundles. Universitext. New York: Springer-Verlag, 1998 · Zbl 0902.14029
[13] Fueter R. (1934). Die Funktionentheorie der Differentialgleichungen {\(\Delta\)}u = 0 und {\(\Delta\)}{\(\Delta\)}u = 0 mit vier reellen Variablen. Comment. Math. Helv. 7(1): 307–330 · Zbl 0012.01704
[14] Griffiths P. and Harris J. (1978). Principles of algebraic geometry. Wiley-Interscience [John Wiley & Sons], New York · Zbl 0408.14001
[15] Hitchin N.J. (1987). The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc., III. Ser. 55: 59–126 · Zbl 0634.53045
[16] Joyce D. (1998). Hypercomplex algebraic geometry. Quart. J. Math. Oxford Ser. (2) 49(194): 129–162 · Zbl 0924.14002
[17] Kaledin, D.: Hyperkaehler structures on total spaces of holomorphic cotangent bundles. http://arxiv.org/list/alg-geom/9710026 , 1997
[18] Maciocia A. (1991). Metrics on the moduli spaces of instantons over Euclidean 4-space. Commun. Math. Phys. 135(3): 467–482 · Zbl 0734.53025
[19] Pidstrygach, V.Ya.: Hyper-Kähler manifolds and the Seiberg-Witten equations. Tr. Mat. Inst. Steklova, 246(Algebr. Geom. Metody, Svyazi i Prilozh.), 263–276, (2004)
[20] Sudbery A. (1979). Quaternionic analysis. Math. Proc. Camb. Philos. Soc. 85: 199–225 · Zbl 0399.30038
[21] Swann A. (1991). HyperKahler and quaternionic Kahler geometry. Math. Ann. 289(3): 421–450 · Zbl 0718.53051
[22] Taubes, C.H.: Nonlinear generalizations of a 3-manifold’s Dirac operator. In: Trends in mathematical physics (Knoxville, TN, 1998), Volume 13 of AMS/IP Stud. Adv. Math., Providence, RI: Amer. Math. Soc. pp. 475–486 1999 · Zbl 1049.58504
[23] Wang C. (2003). Energy quantization for triholomorphic maps. Calc. Var. Partial Differ. Eqs. 18(2): 145–158 · Zbl 1038.58017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.