zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fixed point theorems for mappings with convex diminishing diameters on cone metric spaces. (English) Zbl 1230.54033
Summary: In this work, Cantor’s intersection theorem is extended to cone metric spaces and as an application, a fixed point theorem is derived for mappings with locally power diminishing diameters.

54H25Fixed-point and coincidence theorems in topological spaces
Full Text: DOI
[1] Huang, G. H.; Zhang, Z.: Cone metric spaces and fixed point theorems of contractive mappings, J. math. Anal. appl. 332, 1468-1476 (2007) · Zbl 1118.54022 · doi:10.1016/j.jmaa.2005.03.087
[2] Istrăţescu, V. I.: Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters. -- I, Ann. math. Pure appl. 130, 89-104 (1982) · Zbl 0477.54033 · doi:10.1007/BF01761490
[3] Aliprantis, C. D.; Tourky, R.: Cones and duality, Graduate studies in mathematics 84 (2007) · Zbl 1127.46002
[4] Wong, Y. - C.; Ng, K. -F.: Partially ordered topological vector space, (1973)
[5] Radenović, S.; Kadelburg, Z.: Quasi-contractions on symmetric and cone symmetric spaces, Banach J. Math. anal. 5, No. 1, 38-50 (2011) · Zbl 1297.54058
[6] Ilić, D.; Rakočevié, V.: Quasi-contraction on cone metric space, Appl. math. Lett. 22, 728-731 (2009) · Zbl 1179.54060
[7] Turkoglu, D.; Abuloha, M.: Cone metric spaces and fixed point theorems in diametrically contractive mappings, Acta math. Sin. (Engl. Ser.) 26, 489-496 (2010) · Zbl 1203.54049 · doi:10.1007/s10114-010-8019-5
[8] Abdeljawad, T.: Order norm completions of cone metric spaces, Numer. funct. Anal. optim. 32, No. 5, 477-495 (2011) · Zbl 1229.54039 · doi:10.1080/01630563.2011.563892
[9] Abdeljawad, T.; Karapinar, E.: Quasicone metric spaces and generalizations of caristi kirk’s theorem, Fixed point theory appl. (2009) · Zbl 1197.54051 · doi:10.1155/2009/574387
[10] Pathak, H. K.; Shahzad, N.: Fixed point results for generalized quasicontraction mappings in abstract metric spaces, Nonlinear anal. 71, No. 12, 6068-6076 (2009) · Zbl 1189.54036 · doi:10.1016/j.na.2009.05.052
[11] Rezapour, Sh.; Haghi, R. H.; Shahzad, N.: Some notes on fixed points of quasi-contraction maps, Appl. math. Lett. 23, 498-502 (2010) · Zbl 1206.54061 · doi:10.1016/j.aml.2010.01.003
[12] Turkoglu, D.; Abuloha, M.; Abdeljawad, T.: KKM mappings in cone metric spaces and some fixed point theorems, Nonlinear anal. 72, 348-353 (2010) · Zbl 1197.54076 · doi:10.1016/j.na.2009.06.058
[13] Deimling, K.: Nonlinear functional analysis, (1985) · Zbl 0559.47040
[14] Abdeljawad, T.; Turkoglu, D.; Abuloha, M.: Some theorems and examples of cone Banach spaces, J. comput. Anal. appl. 12, No. 4, 739-753 (2010) · Zbl 1198.46014