zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Switched state-feedback control for continuous time-varying polytopic systems. (English) Zbl 1230.93037
Summary: This article deals with switched state-feedback $\cal H_{2}$ control design of continuous time-varying polytopic systems. More specifically, the main goal is to determine, simultaneously, a set of state-feedback gains and a switching rule to orchestrate them, rendering the closed-loop system globally asymptotically stable for all time-varying uncertain parameter under consideration and assuring a guaranteed $\cal H_{2}$ cost. A contribution of the present switched control technique compared to the gain scheduling, widely used in the literature, is that the online measurement of the uncertain parameter is not required and no assumption on its time derivative is imposed. The conditions are based on modified Lyapunov-Metzler inequalities and can be solved by line search coupled with LMIs. An academic example illustrates the theoretical results and compares the present technique with other techniques from literature.

93B52Feedback control
93D20Asymptotic stability of control systems
93C15Control systems governed by ODE
93C05Linear control systems
Full Text: DOI