zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global exponential synchronization of delayed fuzzy cellular neural networks with impulsive effects. (English) Zbl 1230.93049
Summary: In this paper, synchronization of delayed fuzzy cellular neural networks has been considered. By construction a suitable Lyapunov functional and utilizing some inequality techniques, some sufficient conditions for synchronization of such a system are obtained. Simulation results are given to justify the theoretical analysis in this paper.

93C42Fuzzy control systems
93C15Control systems governed by ODE
37N35Dynamical systems in control
92B20General theory of neural networks (mathematical biology)
Full Text: DOI
[1] Agiza, H. N.; Yassen, M. T.: Synchronization of two Rössler and Chen chaotic dynamical systems using active control, Phys lett A 278, 191-197 (2001) · Zbl 0972.37019 · doi:10.1016/S0375-9601(00)00777-5
[2] Blazejczky-Okolewska, B.; Brindley, J.; Czolczynski, K.; Kapitaniak, T.: Anti-phase synchronization of chaos by noncontinuous coupling: two impacting oscillators, Chaos solitons fract 12, No. 10, 1823-1826 (2001) · Zbl 0994.37044 · doi:10.1016/S0960-0779(00)00145-4
[3] Bai, E. W.; Lonngren, K. E.; Sprott, J. C.: On the synchronization of a class of electronic circuits that exhibit chaos, Chaos solitons fract 13, No. 7, 1515-1521 (2002) · Zbl 1005.34041 · doi:10.1016/S0960-0779(01)00160-6
[4] Bai, E. W.; Lonngren, K. E.: Sequential synchronization of two Lorenz system using active control, Chaos solitons fract 11, 1041-1044 (2000) · Zbl 0985.37106 · doi:10.1016/S0960-0779(98)00328-2
[5] Cao, J.; Lu, J.: Adaptive synchronization of neural networks with or without time-varying delay, Chaos 16 (2006) · Zbl 1144.37331 · doi:10.1063/1.2178448
[6] Ding, W.; Han, M.: Synchronization of delayed fuzzy cellular neural networks based on adaptive control, Phys lett A 372, 4674-4681 (2008) · Zbl 1221.94094 · doi:10.1016/j.physleta.2008.04.053
[7] Ding, W.; Han, M.; Li, M.: Exponential lag synchronization of delayed fuzzy cellular neural networks with impulses, Phys lett A 373, 832-837 (2009) · Zbl 1228.34075 · doi:10.1016/j.physleta.2008.12.049
[8] Ding, W.: Synchronization of delayed fuzzy cellular neural networks with impulsive effects, Commun nonlinear sci numer simul 14, 3945-3952 (2009) · Zbl 1221.34194 · doi:10.1016/j.cnsns.2009.02.013
[9] Grassi, G.; Mascolo, S.: Synchronizing high dimensional chaotic systems via eigenvalue placement with application to cellular neural networks, Int J bifur chaos 9, No. 4, 705-711 (1999) · Zbl 0980.37032 · doi:10.1142/S0218127499000493
[10] Grassi, G.; Mascolo, S.: Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal, IEEE trans circ syst I 44, No. 10, 1011-1014 (1997)
[11] Hegazi, A. S.; Agiza, H. N.; El-Dessoky, M.: Adaptive synchronization for Rössler and Chua’s circuit systems, Int J bifur chaos 12, No. 7, 1579-1597 (2002) · Zbl 1047.34060 · doi:10.1142/S0218127402005388
[12] Huang, X.; Cao, J.: Generalized synchronization for delayed chaotic neural networks: A novel coupling scheme, Nonlinearity 19, No. 12, 2797-2811 (2006) · Zbl 1111.37022 · doi:10.1088/0951-7715/19/12/004
[13] Huang, T.: Exponential stability of fuzzy cellular neural networks with distributed delay, Phys lett A 351, 48-52 (2006) · Zbl 1234.82016
[14] Kapitaniak, T.; Sekieta, M.; Ogorzalek, M.: Monotone synchronization of chaos, Int J bifur chaos 6, No. 1, 211-217 (1996) · Zbl 0870.94003 · doi:10.1142/S021812749600196X
[15] Li, P.; Cao, J.; Wang, Z.: Robust impulsive synchronization of coupled delayed neural networks with uncertainties, Physica A 373, 261-272 (2007)
[16] Li, Z.; Chen, G.: Global synchronization and asymptotic stability of complex dynamical networks, IEEE trans circ syst 53, 28-33 (2006)
[17] Lu, W.; Chen, T.: Synchronization analysis of linearly coupled networks of discrete time systems, Physica D 198, 148-168 (2004) · Zbl 1071.39011 · doi:10.1016/j.physd.2004.08.024
[18] Liao, T.; Lin, S.: Adaptive control and sychronization of Lorenz systems, J franklin inst 336, 925-937 (1999) · Zbl 1051.93514 · doi:10.1016/S0016-0032(99)00010-1
[19] Liu, Z.; Zhang, H.; Wang, Z.: Novel stability criterions of a new fuzzy cellular neural networks with time-varying delays, Neurocomputing 72, 1056-1064 (2009)
[20] Liu, F.; Ren, Y.; Shan, X.; Qiu, Z.: A linear feedback synchronization theorem for a class of chaotic systems, Chaos solitons fract 13, No. 4, 723-730 (2002) · Zbl 1032.34045 · doi:10.1016/S0960-0779(01)00011-X
[21] Lu, J.; Cao, J.: Adaptive synchronization in tree-like dynamical networks, Nonlinear anal: real world appl 8, 1252-1260 (2007) · Zbl 1125.34031 · doi:10.1016/j.nonrwa.2006.07.010
[22] Lu, J.; Han, X.; Li, Y.; Yu, M.: Adaptive coupled synchronization among multi-Lorenz systems family, Chaos solitons fract 31, 866-878 (2007) · Zbl 1143.93333 · doi:10.1016/j.chaos.2005.10.034
[23] Lu, J.; Zhou, T.; Zhang, S.: Chaos synchronization between linearly coupled chaotic systems, Chaos solitons fract 14, No. 4, 529-541 (2002) · Zbl 1067.37043 · doi:10.1016/S0960-0779(02)00005-X
[24] Meise, R.; Vogt, D.: Introduction to functional analysis, (1997) · Zbl 0924.46002
[25] Nikola, B.; Neboj&scirc, V.; A: Global stability of synchronization between delay-differential systems with generalized diffusive coupling, Chaos solitons fract 31, 336-342 (2007) · Zbl 05264980
[26] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys rev lett 64, No. 8, 821-824 (1990) · Zbl 0938.37019
[27] Pecora, L. M.; Carroll, T. L.; Johnson, G. A.: Fundamentals of synchronization in chaotic systems, concepts and applications, Chaos 7, No. 4, 520-543 (1997) · Zbl 0933.37030 · doi:10.1063/1.166278 · http://ojps.aip.org/journal_cgi/getabs?KEY=CHAOEH&cvips=CHAOEH000007000004000520000001&gifs=Yes
[28] Sun, Y.; Cao, J.: Adaptive lag synchronization of unknown chaotic delayed neural networks with noise perturbation, Phys lett A 364, 277-285 (2007) · Zbl 1203.93110 · doi:10.1016/j.physleta.2006.12.019
[29] Sun, Y.; Cao, J.; Wang, Z.: Exponential synchronization of stochastic perturbed chaotic delayed neural networks, Neurocomputing 70, 2477-2485 (2007)
[30] Suykens, J. A. K.; Yang, T.; Chua, L. O.: Impulsive synchronization of chaotic lur systems by measurement feedback, Int J bifur chaos 8, No. 6, 1371-1381 (1998) · Zbl 0936.93027 · doi:10.1142/S0218127498001078
[31] Ushio, T.: Synthesis of synchronized chaotic systems based on observers, Int J bifur chaos 9, No. 3, 541-546 (1999) · Zbl 0941.93533 · doi:10.1142/S0218127499000377
[32] Wang, J.; Lu, J.: Global exponential stability of fuzzy cellular neural networks with delays and reaction-diffusion terms, Chaos solitons fract 38, 878-885 (2008) · Zbl 1146.35315 · doi:10.1016/j.chaos.2007.01.032
[33] Wang, W.; Cao, J.: Synchronization in an array of linearly coupled networks with time-varying delay, Physica A 366, 197-211 (2006)
[34] Yang, Y.; Cao, J.: Exponential lag synchronization of a class of chaotic delayed neural networks with impulsive effects, Physica A 386, 492-502 (2007)
[35] Yang T, et al. In: Proceedings of IEEE International Workshops on Cellular Neural Networks and Applications, 1996, p. 181.
[36] Yang, T.; Yang, L.: The global stability of fuzzy cellular neural network, IEEE trans circut syst-I: fundam theory appl 43, No. 10 (1996)
[37] Yuan, K.; Cao, J.; Deng, J.: Exponential stability and periodic solutions of fuzzy cellular neural networks with time-varying delays, Neurocomputing 69, 1619-1627 (2006)
[38] Yu, W.; Cao, J.: Synchronization control of stochastic delayed neural networks, Physica A 373, 252-260 (2007)