Chaggara, Hamza; Koepf, Wolfram On linearization and connection coefficients for generalized Hermite polynomials. (English) Zbl 1231.33010 J. Comput. Appl. Math. 236, No. 1, 65-73 (2011). Summary: We consider the problem of finding explicit formulas, recurrence relations and sign properties for both connection and linearization coefficients for generalized Hermite polynomials. Most of the computations are carried out by the computer algebra system Maple using appropriate algorithms. Cited in 10 Documents MSC: 33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) 65D20 Computation of special functions and constants, construction of tables Keywords:generalized Hermite polynomials; linearization coefficients; connection coefficients; multiple summation; multsum package Software:Maple PDF BibTeX XML Cite \textit{H. Chaggara} and \textit{W. Koepf}, J. Comput. Appl. Math. 236, No. 1, 65--73 (2011; Zbl 1231.33010) Full Text: DOI OpenURL References: [1] Askey, R., () [2] Szwarc, R., Orthogonal polynomials and a discrete boundary value problem II, SIAM J. math. anal., 23, 959-964, (1992) · Zbl 0772.42013 [3] Álvarez-Nodarse, R.; Yáñez, R.J.; Dehesa, J.S., Modified clebsch – gordan-type expansions for products of discrete hypergeometric polynomials, J. comput. appl. math., 89, 171-197, (1998) · Zbl 0909.33006 [4] S. Lewanowicz, The hypergeometric function approach to the connection problem for the classical orthogonal polynomials, Tech. report, Inst. Computer Sci, Univ. of Wroclaw, Feb. 1998. · Zbl 0933.33012 [5] Ronveaux, A.; Hounkonnou, M.N.; Belmehdi, S., Generalized linearization problems, J. phys. A: math. gen., 28, 4423-4430, (1995) · Zbl 0867.33003 [6] Ronveaux, A.; Belmehdi, S.; Godoy, E.; Zarzo, A., Recurrence relation approach for connection coefficients. application to discrete orthogonal polynomials, (), 321-337 · Zbl 0892.65078 [7] A. Ronveaux, Orthogonal polynomials: connection and linearization coefficients, in: M. Alfaro et al. (Ed.), Proc. Inter. Workshop on Orthogonal Polynomials in Mathematical Physics, Leganés, Madrid, Spain, 1996. · Zbl 0928.33009 [8] Ronveaux, A.; Zarzo, A.; Godoy, E., Recurrence relations for connection coefficients between two families of orthogonal polynomials, J. comput. appl. math., 62, 67-73, (1995) · Zbl 0876.65005 [9] Lewanowicz, S., Second-order recurrence relations for the linearization coefficients of the classical orthogonal polynomials, J. comput. appl. math., 69, 159-160, (1996) · Zbl 0885.33003 [10] Koepf, W.; Schmersau, D., Representations of orthogonal polynomials, J. comput. appl. math., 90, 57-94, (1998) · Zbl 0907.65017 [11] Ben Cheikh, Y.; Chaggara, H., Connection coefficients via lowering operators, J. comput. appl. math., 178, 45-61, (2005) · Zbl 1061.33006 [12] Ben Cheikh, Y.; Chaggara, H., Connection coefficients between boas – buck polynomial sets, J. math. anal. appl., 319, 665-689, (2006) · Zbl 1091.33007 [13] Chaggara, H.; Lamiri, I., Linearization coefficients for boas – buck polynomial sets, Appl. math. comput., 189, 1533-1549, (2007) · Zbl 1138.33003 [14] Wilson, M.W., Nonnegative expansions of polynomials, Proc. amer. math. soc., 24, 100-102, (1970) · Zbl 0184.09603 [15] Lasser, R., Linearization of the product of associated Legendre polynomials, SIAM J. math. anal., 14, 403-408, (1983) · Zbl 0509.33007 [16] Askey, R.; Gasper, G., Jacobi polynomial expansions of Jacobi polynomials with non-negative coefficients, Proc. camb. phil. soc., 70, 243-255, (1971) · Zbl 0217.11402 [17] Dimitrov, D.K., Connection coefficients and zeros of orthogonal polynomials, J. comput. appl. math., 133, 331-340, (2001) · Zbl 1010.42016 [18] Chaggara, H.; Koepf, W., Duplication coefficients for discrete polynomial sets via generating functions, Complex var. elliptic equ., 52, 237-249, (2007) [19] Koepf, W., Hypergeometric summation, (1998), Vieweg Braunschweig, Wiesbaden [20] T. Sprenger, Algorithmen für mehrfache Summen, Diploma Thesis at the University of Kassel, 2004, pp. 1-85. [21] Polya, G.; Szegö, G., Problems and theorems in analysis, vol. 1, (1972), Springer-Verlag New York, Heidelberg and Berlin · Zbl 0236.00003 [22] T.S. Chihara, Generalized Hermite polynomials, Ph.D. Thesis, Purdue, 1955. [23] Shao, T.S.; Chen, T.C.; Frank, R.M., Table of zeros and gaussien weights of certain associated Laguerre polynomials and generalized Hermite polynomials, Math. comp., 18, 598-616, (1964) · Zbl 0123.34501 [24] Rosenblum, M., Generalized Hermite polynomials and the Bose-like oscillator calculus, Oper. theory adv. appl., 73, 369-396, (1994) · Zbl 0826.33005 [25] Ben Cheikh, Y.; Gaied, M., Dunkl-Appell \(d\)-orthogonal polynomials, Integral transforms spec. funct., 18, 581-597, (2007) · Zbl 1137.42005 [26] Dette, H., Characterizations of generalized Hermite and sieved ultraspherical polynomials, Trans. amer. math. soc., 348, 691-711, (1996) · Zbl 0863.33006 [27] Chaggara, H., Operational rules and a generalized Hermite polynomials, J. math. anal. appl., 332, 11-21, (2007) · Zbl 1115.33006 [28] Ben Cheikh, Y., Some results on quasi-monomiality, Appl. math. comput., 141, 63-76, (2003) · Zbl 1041.33008 [29] Srivastava, H.M.; Manocha, H.L., A treatise on generating functions, (1984), John Wiley and Sons New York, Chichester, Brisbane, Toronto · Zbl 0535.33001 [30] Carlitz, L., Products of Appell polynomials, Collect. math., 112, 133-138, (1963) [31] K. Wegschaider, Computer generated proofs of binomial multi-sum identities, Diploma Thesis at the J. Kepler University of Linz, 1997, pp. 1-99. [32] Van Hoeij, M., Finite singularities and hypergeometric solutions of linear recurrence equations, J. pure appl. algebra, 139, 109-131, (1998) · Zbl 0933.39041 [33] Rainville, E.D., Special functions, (1960), The Macmillan Company New York · Zbl 0050.07401 [34] Watson, G.N., A note on the polynomials of Hermite and Laguerre, J. lond. math. soc., 13, 29-32, (1938) · Zbl 0018.21302 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.