zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Periodic BVPs in ODEs with time singularities. (English) Zbl 1231.34072
Summary: We show the existence of solutions to a nonlinear singular second order ordinary differential equation, $$u''(t)=\frac{a}{t}u'(t)+\lambda f(t,u(t),u'(t))$$ subject to periodic boundary conditions, where $a>0$ is a given constant, $\lambda >0$ is a parameter, and the nonlinearity $f(t,x,y)$ satisfies the local Carathéodory conditions on $[0,T]\times \bbfR\times \bbfR$. Here, we study the case that a well-ordered pair of lower and upper functions does not exist and therefore the underlying problem cannot be treated by well-known standard techniques. Instead, we assume the existence of constant lower and upper functions having opposite order. Analytical results are illustrated by means of numerical experiments.

34C25Periodic solutions of ODE
34B16Singular nonlinear boundary value problems for ODE
Full Text: DOI
[1] Budd, C.; Koch, O.; Weinmüller, E.: From nonlinear pdes to singular odes, Appl. numer. Math. 56, 413-422 (2006) · Zbl 1089.65104 · doi:10.1016/j.apnum.2005.04.012
[2] Hammerling, R.; Koch, O.; Simon, C.; Weinmüller, E.: Numerical solution of eigenvalue problems in electronic structure computations, J. comput. Phys. 181, 1557-1561 (2010) · Zbl 1216.65096 · doi:10.1016/j.cpc.2010.05.006
[3] Kitzhofer, G.; Koch, O.; Lima, P.; Weinmüller, E.: Efficient numerical solution of the density profile equation in hydrodynamics, J. sci. Comput. (2006) · Zbl 1178.76280
[4] Weinmüller, E.: On the boundary value problems for systems of ordinary second order differential equations with a singularity of the first kind, SIAM J. Math. anal. 15, 287-307 (1984) · Zbl 0537.34017 · doi:10.1137/0515023
[5] Lee, J. W.; O’regan, D.: Existence of solutions to some initial value, two-point, and multi-point voundary value problems with discontinuous nonlinearities, Appl. anal. 33, 57-77 (1989) · Zbl 0643.34018 · doi:10.1080/00036818908839861
[6] Agarwal, R. P.; O’regan, D.: Singular problems arising in circular membrane theory, Dyn. contin. Discrete impuls. Syst., ser. A math. Anal. 10, No. 6, 965-972 (2003) · Zbl 1056.34029
[7] Baxley, J. V.; Gersdorff, G. S.: Singular reaction--diffusion boundary value problem, J. differential equations 115, 441-457 (1995) · Zbl 0815.35019 · doi:10.1006/jdeq.1995.1022
[8] Hlavacek, V.; Marek, M.; Kubicek, M.: Modeling of chemical reactors--X. Multiple solutions of enthalpy and mass balances for a catalytic reaction within a porous catalyst particle, Chem. eng. Sci. 23, 1083-1097 (1968)
[9] Johnson, K. N.: Circularly symmetric deformation of shallow elastic membrane caps, Quart. appl. Math. 55, 537-550 (1997) · Zbl 0885.73027
[10] Rachunková, I.; Pulverer, G.; Weinmüller, E.: A unified approach to singular problems arising in the membrane theory, Appl. math. 55, 47-75 (2010) · Zbl 1224.34072 · doi:10.1007/s10492-010-0002-z
[11] Shin, J. Y.: A singular nonlinear differential equation arising in the homann flow, J. math. Anal. appl. 212, 443-451 (1997) · Zbl 0883.34021 · doi:10.1006/jmaa.1997.5516
[12] Rachunková, I.; Staněk, S.; Tvrdý, M.: Solvability of nonlinear singular problems for ordinary differential equations, (2008)
[13] Rachunková, I.; Staněk, S.; Weinmüller, E.; Zenz, M.: Limit properties of solutions of singular second-order differential equations, Bound. value probl. 2009, 28 (2009) · Zbl 1189.34048 · doi:10.1155/2009/905769
[14] Rachunková, I.; Staněk, S.; Weinmüller, E.; Zenz, M.: Neumann problems with time singularities, Comput. math. Appl. 60, 722-733 (2010) · Zbl 1201.34038 · doi:10.1016/j.camwa.2010.05.019
[15] Dickey, R. W.: Rotationally symmetric solutions for shallow membrane caps, Quart. appl. Math. 47, 571-581 (1989) · Zbl 0683.73022
[16] Kiguradze, I. T.: Some singular boundary value problems for ordinary differential equations, (1975) · Zbl 0307.34003
[17] Polášek, V.; Rachunková, I.: Singular periodic problem for nonlinear ordinary differential equations with phi-Laplacian, Electron. J. Differ.equ. 27, 1-12 (2006) · Zbl 1098.34014 · emis:journals/EJDE/Volumes/2006/27/abstr.html
[18] Deimling, K.: Nonlinear functional analysis, (1985) · Zbl 0559.47040
[19] Bihari, I.: A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta math. Acad. sci. Hungar. 7, 71-94 (1956) · Zbl 0070.08201 · doi:10.1007/BF02022967
[20] Kitzhofer, G.; Pulverer, G.; Simon, C.; Koch, O.; Weinmüller, E.: The new Matlab solver BVPSUITE for the solution of singular implicit BVPs, JNAIAM, J. Numer. anal. Ind. appl. Math. 5, 113-134 (2010)