Existence and controllability results for fractional semilinear differential inclusions. (English) Zbl 1231.34108

Summary: We prove the existence and controllability results for fractional semilinear differential inclusions involving the Caputo derivative in Banach spaces. The results are obtained by using fractional calculation, operator semigroups and Bohnenblust-Karlin’s fixed point theorem. At last, an example is given to illustrate the theory.


34G25 Evolution inclusions
35R11 Fractional partial differential equations
34A08 Fractional ordinary differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI


[1] Baleanu, D.; Tenreiro Machado, J. A., Fractional differentiation and its applications (FDA08), Phys. Scr., 2009, 011001 (2009)
[2] Jiang, X. Y.; Xu, M. Y., The fractional finite Hankel transform and its applications in fractal space, J. Phys. A: Math. Theor., 42, 385201 (2009) · Zbl 1187.44002
[3] Muslih, S. I.; Agrawal, O. P.; Baleanu, D., A fractional Dirac equation and its solution, J. Phys. A: Math. Theor., 43, 055203 (2010) · Zbl 1185.81078
[4] Özdemir, N.; Agrawal, O. P.; Karadeniz, D.; iskender, B. B., Analysis of an axis-symmetric fractional diffusion-wave problem, J. Phys. A: Math. Theor., 42, 355208 (2009) · Zbl 1189.26009
[5] Tarasov, V. E., Differential equations with fractional derivative and universal map with memory, J. Phys. A: Math. Theor., 42, 465102 (2009) · Zbl 1192.26007
[6] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., (Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204 (2006), Elsevier Science B.V: Elsevier Science B.V Amsterdam) · Zbl 1092.45003
[7] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Differential Equations (1993), John Wiley: John Wiley New York · Zbl 0789.26002
[8] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[9] Lakshmikantham, V.; Leela, S.; Vasundhara Devi, J., Theory of Fractional Dynamic Systems (2009), Cambridge Scientific Publishers · Zbl 1188.37002
[10] Agarwal, Ravi P.; Benchohra, M.; Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109, 973-1033 (2010) · Zbl 1198.26004
[11] Agarwal, Ravi P.; Belmekki, M.; Benchohra, M., A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv. Difference Equ. (2009), Article ID 981728, 47pp · Zbl 1182.34103
[12] Balachandran, K.; Park, J. Y., Nonlocal Cauchy problem for abstract fractional semilinear evolution equations, Nonlinear Anal., 71, 4471-4475 (2009) · Zbl 1213.34008
[13] Balachandran, K.; Kiruthika, S.; Trujillo, J. J., Existence results for fractional impulsive integrodifferential equations in Banach spaces, Commun. Nonlinear Sci. Numer. Simul., 16, 1970-1977 (2011) · Zbl 1221.34215
[14] El-Borai, M. M., Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fractals, 14, 433-440 (2002) · Zbl 1005.34051
[15] El-Borai, M. M., The fundamental solutions for fractional evolution equations of parabolic type, J. Appl. Math. Stoch. Anal., 3, 197-211 (2004) · Zbl 1081.34053
[16] Hernández, E.; O’Regan, D.; Balachandran, K., On recent developments in the theory of abstract differential equations with fractional derivatives, Nonlinear Anal., 73, 3462-3471 (2010) · Zbl 1229.34004
[17] Wang, JinRong; Zhou, Yong, A class of fractional evolution equations and optimal controls, Nonlinear Anal., 12, 262-272 (2011) · Zbl 1214.34010
[18] Zhou, Yong; Jiao, Feng, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59, 1063-1077 (2010) · Zbl 1189.34154
[19] Zhou, Yong; Jiao, Feng, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal., 11, 4465-4475 (2010) · Zbl 1260.34017
[20] Abada, N.; Benchohra, M.; Hammouche, H., Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differential Equations, 246, 3834-3863 (2009) · Zbl 1171.34052
[21] Benchohra, M.; Ntouyas, S. K., Controllability for functional differential and integrodifferential inclusions in Banach spaces, J. Optim. Theory Appl., 113, 449-472 (2002) · Zbl 1020.93002
[22] Benchohra, M.; Gatsori, E. P.; Ntouyas, S. K., Controllability results for semilinear evolution inclusions with nonlocal conditions, J. Optim. Theory Appl., 118, 493-513 (2003) · Zbl 1046.93005
[23] Benchohra, M.; Ouahab, A., Controllability results for functional semilinear differential inclusions in Fréchet spaces, Nonlinear Anal., 61, 405-423 (2005) · Zbl 1086.34062
[24] Benchohra, M.; Henderson, J.; Ntouyas, S. K., Impulsive Differential Equations and Inclusions (2006), Hindawi: Hindawi New York · Zbl 1130.34003
[25] Chang, Y. K.; Li, W. T.; Nieto, J. J., Controllability of evolution differential inclusions in Banach spaces, Nonlinear Anal., 67, 623-632 (2007) · Zbl 1128.93005
[26] Chang, Y. K.; Chalishajar, D. N., Controllability of mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces, J. Franklin Inst., 345, 499-507 (2008) · Zbl 1167.93007
[27] Chang, Y. K.; Nieto, J. J., Existence of solutions for impulsive neutral integro-differential inclusions with nonlocal initial conditions via fractional operators, Numer. Funct. Anal. Optim., 30, 227-244 (2009) · Zbl 1176.34096
[28] Mordukhovich, B. S.; Wang, D., Optimal control of semilinear unbounded differential inclusions, Nonlinear Anal., 63, 847-853 (2005) · Zbl 1153.49313
[29] Nieto, J. J.; Rodríguez-López, R., Euler polygonal method for metric dynamical systems, Inform. Sci., 177, 4256-4270 (2007) · Zbl 1142.65068
[30] Ntouyas, S. K.; O’Regan, D., Controllability for semilinear neutral functional differential inclusions via analytic semigroups, J. Optim. Theory Appl., 135, 491-513 (2007) · Zbl 1138.93014
[31] Smirnov, G. V., (Introduction to the Theory of Differential Inclusions. Introduction to the Theory of Differential Inclusions, Graduate Studies in Mathematics, vol. 41 (2002), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 0992.34001
[32] Xiang, X.; Ahmed, N. U., Infinite dimensional functional differential inclusions and necessary optimization conditions, Nonlinear Anal., 30, 429-436 (1997) · Zbl 0921.49015
[33] Xiang, X.; Ahmed, N. U., Necessary conditions of optimality for differential inclusions on Banach space, Nonlinear Anal., 30, 5437-5445 (1997) · Zbl 0914.49013
[34] Agarwal, Ravi P.; Belmekki, M.; Benchohra, M., Existence results for semilinear functional differential inclusions involving Riemann-Liouville fractional derivative, Dyn. Contin. Discrete Impuls. syst., 17, 347-361 (2010) · Zbl 1198.34178
[36] Ahmad, B., Existence results for fractional differential inclusions with separated boundary conditions, Bull. Korean Math. Soc., 47, 805-813 (2010) · Zbl 1260.34011
[37] Chang, Y. K.; Nieto, J. J., Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Modelling, 49, 605-609 (2009) · Zbl 1165.34313
[38] Chang, Y. K.; Nieto, J. J.; Li, W. S., On impulsive hyperbolic differential inclusions with nonlocal initial conditions, J. Optim. Theory Appl., 140, 431-442 (2009) · Zbl 1159.49042
[39] El-Sayed, A. M.A.; Ibrahim, A.-G., Multivalued fractional differential equations, Appl. Math. Comput., 68, 15-25 (1995) · Zbl 0830.34012
[40] Henderson, J.; Ouahab, A., Fractional functional differential inclusions with finite delay, Nonlinear Anal., 70, 2091-2105 (2009) · Zbl 1159.34010
[41] Li, W. S.; Chang, Y. K.; Nieto, J. J., Solvability of impulsive neutral evolution differential inclusions with state-dependent delay, Math. Comput. Modelling, 49, 1920-1927 (2009) · Zbl 1171.34304
[42] Ouahab, A., Some results for fractional boundary value problem of differential inclusions, Nonlinear Anal., 69, 3877-3896 (2008) · Zbl 1169.34006
[43] Deimling, K., Multivalued Differential Equations (1992), De Gruyter: De Gruyter Berlin · Zbl 0760.34002
[44] Hu, S.; Papageorgiou, N. S., Handbook of multivalued Analysis (Theory) (1997), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht Boston, London · Zbl 0887.47001
[45] Lasota, A.; Opial, Z., An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys., 13, 781-786 (1965) · Zbl 0151.10703
[46] Bohnenblust, H. F.; Karlin, S., (On a Theorem of Ville. On a Theorem of Ville, Contributions to the Theory of Games, vol. I (1950), Princeton University Press: Princeton University Press Princeton, NJ), 155-160 · Zbl 0041.25701
[47] Herná ndez, E.; O’Regan, D., Controllability of Volterra-Fredholm type systems in Banach spaces, J. Franklin Inst., 346, 95-101 (2009)
[48] Obukhovski, V.; Zecca, P., Controllability for systems governed by semilinear differential inclusions in a Banach space with a noncompact semigroup, Nonlinear Anal., 70, 3424-3436 (2009) · Zbl 1157.93006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.