##
**Summability of sequences and selection properties.**
*(English)*
Zbl 1231.40001

Summary: We prove that some classes of summable sequences of positive real numbers satisfy several selection principles related to a special kind of convergence.

### MSC:

40A05 | Convergence and divergence of series and sequences |

PDF
BibTeX
XML
Cite

\textit{D. Djurčić} et al., Abstr. Appl. Anal. 2011, Article ID 213816, 8 p. (2011; Zbl 1231.40001)

Full Text:
DOI

### References:

[1] | L. D. R. Ko\vcinac, “Selected results on selection principles,” in Proceedings of the 3rd Seminar on Geometry and Topology, pp. 71-104, Tabriz, Iran, July 2004. |

[2] | L. D. R. Ko\vcinac, “On the \alpha i-selection principles and games,” Contemporary Mathematics, vol. 533, pp. 107-124, 2011. · Zbl 1221.54001 |

[3] | N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, vol. 27 of Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, UK, 1987. · Zbl 0617.26001 |

[4] | E. Seneta, Regularly Varying Functions, vol. 508 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1976. · Zbl 0324.26002 |

[5] | L. de Haan, On Regular Variations and Its Applications to the Weak Convergence of Sample Extremes, vol. 32 of Mathematical Centre Tracts, Mathematisch Centrum, Amsterdam, The Netherlands, 1970. · Zbl 0226.60039 |

[6] | D. Djur, “O-regularly varying functions and strong asymptotic equivalence,” Journal of Mathematical Analysis and Applications, vol. 220, no. 2, pp. 451-461, 1998. · Zbl 0920.26004 |

[7] | D. Djur, L. D. R. Ko\vcinac, and M. R. \vZi, “On selection principles and games in divergent processes,” in Selection Principles and Covering Properties in Topology, vol. 18 of Quaderni di Matematica, pp. 133-155, Seconda Universita di Napoli, Caserta, Italy, 2006. · Zbl 1158.26301 |

[8] | D. Djur, L. D. R. Ko\vcinac, and M. R. \vZi, “Some properties of rapidly varying sequences,” Journal of Mathematical Analysis and Applications, vol. 327, no. 2, pp. 1297-1306, 2007. · Zbl 1116.26002 |

[9] | D. Djur, L. D. R. Ko\vcinac, and M. R. \vZi, “Rapidly varying sequences and rapid convergence,” Topology and Its Applications, vol. 155, no. 17-18, pp. 2143-2149, 2008. · Zbl 1154.54002 |

[10] | D. Djur, L. D. R. Ko\vcinac, and M. R. \vZi, “Classes of sequences of real numbers, games and selection properties,” Topology and Its Applications, vol. 156, no. 1, pp. 46-55, 2008. · Zbl 1168.54002 |

[11] | D. Djur, L. D. R. Ko\vcinac, and M. R. \vZi, “A few remarks on divergent sequences: rates of divergence,” Journal of Mathematical Analysis and Applications, vol. 360, no. 2, pp. 588-598, 2009. · Zbl 1196.40001 |

[12] | D. Djur, L. D. R. Ko\vcinac, and M. R. \vZi, “A few remarks on divergent sequences: rates of divergence II,” Journal of Mathematical Analysis and Applications, vol. 367, no. 2, pp. 705-709, 2010. · Zbl 1196.40002 |

[13] | D. Djur, L. D. R. Ko\vcinac, and M. R. \vZi, “On the class \?0\? of real sequences,” submitted. |

[14] | P. K. Jain and E. Malkowsky, Eds., Sequence Spaces and Applications, Narosa Publishing House, New Delhi, India, 1999. · Zbl 0960.00019 |

[15] | D. Djur and A. Torga\vsev, “On the Seneta sequences,” Acta Mathematica Sinica, English Series, vol. 22, no. 3, pp. 689-692, 2006. · Zbl 1170.26300 |

[16] | D. Djur and A. Torga\vsev, “A theorem of Galambos-Bojanić-Seneta type,” Abstract and Applied Analysis, Article ID 360794, 6 pages, 2009. · Zbl 1168.26300 |

[17] | L. D. R. Ko\vcinac, “Selection principles related to \alpha i-properties,” Taiwanese Journal of Mathematics, vol. 12, no. 3, pp. 561-571, 2008. · Zbl 1153.54009 |

[18] | D. Djur, L. D. R. Ko\vcinac, and M. R. \vZi, “Relations between sequences and selection properties,” Abstract and Applied Analysis, Article ID 43081, 8 pages, 2007. · Zbl 1153.40300 |

[19] | G. Di Maio, D. Djur, L. D. R. Ko\vcinac, and M. R. \vZi, “Statistical convergence, selection principles and asymptotic analysis,” Chaos, Solitons and Fractals, vol. 42, no. 5, pp. 2815-2821, 2009. · Zbl 1198.40006 |

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.