zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A novel characteristic of solution operator for the fractional abstract Cauchy problem. (English) Zbl 1231.47039
This paper introduces the notion of fractional semigroups and develops an operator theory for the fractional abstract Cauchy problem (FACP). It is proved that a family of bounded linear operators is a solution operator for the (FACP) if and only if it is a fractional semigroup. Several important properties of solution operators are established by use of an equality for the Mittag-Leffler function. Based on these properties, the authors discuss uniqueness of solutions to the (FACP) and show that the (FACP) is well-posed if and only if its coefficient operator generates a fractional semigroup.

MSC:
47D06One-parameter semigroups and linear evolution equations
34A08Fractional differential equations
WorldCat.org
Full Text: DOI
References:
[1] E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, University Press Facilities, Eindhoven University of Technology, 2001.
[2] El-Borai, M. M.; El-Nadia, K. El-Said; El-Akabawy, E. G.: On some fractional evolution equations, Comput. math. Appl. 59, 1352-1355 (2010) · Zbl 1189.45009 · doi:10.1016/j.camwa.2009.05.005
[3] Chen, C.; Li, M.: On fractional resolvent operator functions, Semigroup forum 80, 121-142 (2010) · Zbl 1185.47040 · doi:10.1007/s00233-009-9184-7
[4] Kilbas, A. A.; Pierantozzi, T.; Trujillo, J. J.; Vazquez, L.: On the solution of fractional evolution equations, J. phys. A 37, 3271-3283 (2004) · Zbl 1059.35030 · doi:10.1088/0305-4470/37/9/015
[5] Kexue, L.; Jigen, P.: Fractional abstract Cauchy problems, Integral equations operator theory 70, No. 3, 333-361 (2011) · Zbl 1242.34008
[6] Li, F. -B.; Li, M.; Zheng, Q.: Fractional evolution equations governed by coercive differential operators, Abstr. appl. Anal. (2009) · Zbl 1168.47036 · doi:10.1155/2009/438690
[7] Odibat, Z. M.: Analytic study on linear systems of fractional differential equations, Comput. math. Appl. 59, 1171-1183 (2010) · Zbl 1189.34017 · doi:10.1016/j.camwa.2009.06.035
[8] Peng, J.; Li, K.: A note on the Mittag-Leffler function, J. math. Anal. appl. 370, 635-638 (2010) · Zbl 1194.30002 · doi:10.1016/j.jmaa.2010.04.031
[9] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[10] Pazy, A.: Semigroups of linear operators and applications to partial differential equations, (1983) · Zbl 0516.47023
[11] Prüss, J.: Evolutionary integral equations and applications, (1993) · Zbl 0784.45006
[12] Sabatier, J.; Agrawal, O. P.; Machado, J. A. Tenreiro: Advances in fractional calculus: theoretical developments and applications in physics and engineering, (2007) · Zbl 1116.00014