×

zbMATH — the first resource for mathematics

The Dehn invariants of the Bricard octahedra. (English) Zbl 1231.52019
Author’s abstract: We prove that the Dehn invariants of any Bricard octahedron remain constant during the flex and that the Strong Bellows Conjecture holds true for the Steffen flexible polyhedron.

MSC:
52C25 Rigidity and flexibility of structures (aspects of discrete geometry)
52B10 Three-dimensional polytopes
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Alexander R.: Lipschitzian mappings and total mean curvature of polyhedral surfaces. I. Trans. Amer. Math. Soc 288, 661–678 (1985) · Zbl 0563.52008
[2] Berger M.: Geometry. I, II. Springer, Berlin (1987) · Zbl 0606.51001
[3] Boltyanskii V.G.: Hilbert’s third problem. Winston, Washington D.C. (1978) · Zbl 0388.51001
[4] Bricard, R.: Mémoire sur la théorie de l’octaèdre articulé. J. de Math. (5) 3, 113–148 (1897) · JFM 28.0624.01
[5] Connelly R.: A counterexample to the rigidity conjecture for polyhedra. Publ. Math. IHES 47, 333–338 (1977) · Zbl 0375.53034
[6] Connelly R.: The rigidity of polyhedral surfaces. Math. Mag 52, 275–283 (1979) · Zbl 0452.51019
[7] Connelly R., Sabitov I., Walz A.: The bellows conjecture. Beitr. Algebra Geom 38, 1–10 (1997) · Zbl 0939.52009
[8] Dehn, M.: Über raumgleiche Polyeder. Gött. Nachr. 345–354 (1900) · JFM 31.0505.02
[9] Gluck H.: Almost all simply connected closed surfaces are rigid. In: Glaser, L.C., Rushing, T.B. (eds) Lect. Notes Math 438., pp. 225–239. Springer, Berlin (1975) · Zbl 0315.50002
[10] Jessen B.: The algebra of polyhedra and the Dehn–Sydler theorem. Math. Scand 22, 241–256 (1968) · Zbl 0183.49803
[11] Kuiper, N.H.: Sphères polyédriques flexibles dans E 3, d’après Robert Connelly. In: Séminaire Bourbaki, vol. 1977/78, Exposés 507–524, Lect. Notes Math. 710, pp. 147–168. Springer, Berlin (1979) · Zbl 0435.53043
[12] Lebesgue H.: Octaèdres articulés de Bricard. Enseign. Math. II. Sér 13, 175–185 (1967) · Zbl 0155.49301
[13] Maksimov I.G.: Nonflexible polyhedra with a small number of vertices. J. Math. Sci., New York 149, 956–970 (2008) · Zbl 1179.52029
[14] Sabitov, I.Kh.: Local theory of bendings of surfaces. In: Geometry III, Theory of surfaces, Encycl. Math. Sci. 48, pp. 179–250. Springer, Berlin (1992)
[15] Sabitov I.Kh.: The volume of a polyhedron as a function of its metric (in Russian). Fundam. Prikl. Mat 2, 1235–1246 (1996) · Zbl 0904.52002
[16] Sabitov I.Kh.: The volume as a metric invariant of polyhedra. Discrete Comput. Geom 20, 405–425 (1998) · Zbl 0922.52006
[17] Sabitov, I.Kh.: The volumes of polyhedra (in Russian). Moscow Center for Continuous Mathematical Education, Moscow (2002) · Zbl 1076.51513
[18] Schlenker, J.-M.: La conjecture des soufflets (d’après I. Sabitov). In: Seminaire Bourbaki, vol. 2002/03, Exposes 909–923. Société Mathématique de France, Paris. Astérisque 294, 77–95, Exp. No. 912 (2004)
[19] Smart W.M.: Text-book on spherical astronomy, 6th edn. Cambridge University Press, Cambridge (1960) · Zbl 0002.09704
[20] Stachel H. et al.: Flexible octahedra in the hyperbolic space. In: Prékopa, A (eds) Non-Euclidean geometries, János Bolyai memorial volume., pp. 209–225. Springer, New York (2006)
[21] Sydler J.P.: Conditions necessaires et suffisantes pour l’équivalence des polyedres de l’espace euclidien à trois dimensions. Comment. Math. Helv 40, 43–80 (1965) · Zbl 0135.20906
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.