zbMATH — the first resource for mathematics

A topology optimization method based on the level set method incorporating a fictitious interface energy. (English) Zbl 1231.74365
Summary: This paper proposes a new topology optimization method, which can adjust the geometrical complexity of optimal configurations, using the level set method and incorporating a fictitious interface energy derived from the phase field method. First, a topology optimization problem is formulated based on the level set method, and the method of regularizing the optimization problem by introducing fictitious interface energy is explained. Next, the reaction-diffusion equation that updates the level set function is derived and an optimization algorithm is then constructed, which uses the finite element method to solve the equilibrium equations and the reaction-diffusion equation when updating the level set function. Finally, several optimum design examples are shown to confirm the validity and utility of the proposed topology optimization method.

74P15 Topological methods for optimization problems in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
Full Text: DOI Link
[1] Cahn, J.W.; Hilliard, J.E., Free energy of a nonuniform system. I: interfacial free energy, J. chem. phys., 28, 2, 258-267, (1958)
[2] Allen, S.M.; Cahn, J.W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta metall., 27, 1085-1095, (1979)
[3] Eyre, D., Systems of cahn – hilliard equations, SIAM J. appl. math., 53, 6, 1686-1712, (1993) · Zbl 0853.73060
[4] Leo, P.H.; Lowengrub, J.S.; Jou, H.J., A diffuse interface model for microstructural evolution in elastically stressed solids, Acta metall., 46, 6, 2113-2130, (1998)
[5] Prager, W., A note on discretized michell structures, Comput. methods appl. mech. engrg., 3, 3, 349, (1974) · Zbl 0278.73044
[6] Svanberg, K., Optimal geometry in truss design, () · Zbl 0466.73121
[7] Zienkiewicz, O.C.; Campbell, J.S., Shape optimization and sequential linear programming, ()
[8] Haslinger, J.; Mälinen, R.A.E., Introduction to shape optimization: theory, approximation and computation, (2003), SIAM Philadelphia · Zbl 1020.74001
[9] Mohammadi, B.; Pironneau, O., Applied shape optimization for fluids, (2001), Oxford University Press Oxford · Zbl 0970.76003
[10] Pironneau, O., Optimal shape design for elliptic systems, (1984), Springer-Verlag New York · Zbl 0496.93029
[11] Sokolowski, J.; Zolesio, J.P., Introduction to shape optimization: shape sensitivity analysis, (1992), Springer-Verlag Berlin · Zbl 0761.73003
[12] Bendsøe, M.P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. methods appl. mech. engrg., 71, 197-224, (1988) · Zbl 0671.73065
[13] Bendsøe, M.P.; Sigmund, O., Topology optimization: theory, methods, and applications, (2003), Springer-Verlag Berlin · Zbl 0957.74037
[14] Cherkaev, A., Variational methods for structural optimization, (2000), Springer-Verlag New York · Zbl 0956.74001
[15] Suzuki, K.; Kikuchi, N., A homogenization method for shape and topology optimization, Comput. methods appl. mech. engrg., 93, 291-318, (1991) · Zbl 0850.73195
[16] Diaz, A.R.; Kikuchi, N., Solutions to shape and topology eigenvalue optimization using a homogenization method, Int. J. numer. methods engrg., 35, 1487-1502, (1992) · Zbl 0767.73046
[17] Ma, Z.D.; Kikuchi, N., Topological design for vibrating structures, Comput. methods appl. mech. engrg., 121, 259-280, (1995) · Zbl 0849.73045
[18] Yang, X.Y.; Xie, Y.M.; Steven, G.P.; Querin, O.M., Topology optimization for frequencies using an evolutionary method, J. struct. engrg., 125, 1432-1438, (1999)
[19] Nishiwaki, S.; Frecker, M.I.; Min, S.; Kikuchi, N., Topology optimization of compliant mechanisms using the homogenization method, Int. J. numer. methods engrg., 42, 535-559, (1998) · Zbl 0908.73051
[20] Sigmund, O., On the design of compliant mechanisms using topology optimization, Mech. based des. struct. Mach., 25, 4, 493-524, (1997)
[21] Haslinger, J.; Hillebrand, A.; Karkkainen, T.; Miettinen, M., Optimization of conducting structures by using the homogenization method, Struct. multidiscip. optimiz., 24, 125-140, (2002)
[22] Li, Q.; Steven, G.P.; Querin, O.M.; Xie, Y.M., Shape and topology design for heat conduction by evolutionary structural optimization, Int. J. heat mass transfer, 42, 3361-3371, (1999) · Zbl 0943.74050
[23] Iga, A.; Nishiwaki, S.; Izui, K.; Yoshimura, M., Topology optimization for thermal conductors with heat convection and conduction including design-dependent effects, Int. J. heat mass transfer, 52, 2721-2732, (2009) · Zbl 1167.80335
[24] Murat, F.; Tartar, L., Optimality conditions and homogenization, Proceedings of nonlinear variational problems, (1985), Pitman Publishing Program Boston, 1-8 · Zbl 0569.49015
[25] Allaire, G., Shape optimization by the homogenization method, (2002), Springer-Verlag · Zbl 0990.35001
[26] Benssousan, A.; Lions, J.L.; Papanicoulau, G., Asymptotic analysis for periodic structures, (1978), North-Holland Amsterdam, New York, Oxford
[27] Sanchez-Palencia, E., Non homogeneous media and vibration theory, Lecture notes in physics, vol. 127, (1980), Springer-Verlag Berlin
[28] Lions, J.L., Some methods in mathematical analysis of systems and their control, (1981), Kexue Chubanshe Science Press and Gordon & Breach Science Pub. Beijing · Zbl 0542.93034
[29] Bendsøe, M.P., Optimal shape design as a material distribution problem, Struct. optimiz., 1, 193-202, (1989)
[30] Bendsøe, M.P.; Sigmund, O., Optimization of structural topology, shape and material, (1997), Springer Berlin · Zbl 0957.74037
[31] Yang, R.J.; Chung, C.H., Optimal topology design using linear programming, Comput. struct., 53, 265-275, (1994) · Zbl 0900.73493
[32] Bendsøe, M.P.; Sigmund, O., Material interpolation schemes in topology optimization, Arch. appl. mech., 69, 635-654, (1999) · Zbl 0957.74037
[33] Wang, M.Y.; Zhou, S., Phase field: a variational method for structural topology optimization, Comput. model. engrg. sci., 6, 6, 547-566, (2004) · Zbl 1152.74382
[34] Zhou, S.; Wang, M.Y., Multimaterial structural topology optimization with a generalized cahn – hilliard model of multiphase transition structural and multidisciplinary optimization, Struct. multidiscip. optimiz., 33, 2, 89-111, (2007) · Zbl 1245.74077
[35] Zhou, S.; Wang, M.Y., 3D multi-material structural topology optimization with the generalized cahn – hilliard equations, Comput. model. engrg. sci., 16, 2, 83-101, (2006)
[36] Wang, M.Y.; Zhou, S.; Ding, H., Nonlinear diffusions in topology optimization, Struct. multidiscip. optimiz., 28, 262-276, (2004) · Zbl 1243.74160
[37] Wang, M.Y.; Zhou, S., Synthesis of shape and topology of multi-material structures with a phase-field method, J. comput. aid. mater. des., 11, 117-138, (2004)
[38] Burger, M.; Stainko, R., Phase-field relaxation of topology optimization with local stress constraints, SIAM J. control optimiz., 45, 4, 1447-1466, (2006) · Zbl 1116.74053
[39] Xie, Y.M.; Steven, G.P., A simple evolutionary procedure for structural optimization, Comput. struct., 49, 885-896, (1993)
[40] Diaz, A.Z.; Sigmund, O., Checkerboard patterns in layout optimization, Struct. optimiz., 10, 40-45, (1995)
[41] Sigmund, O.; Petersson, J., Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Struct. optimiz., 16, 68-75, (1998)
[42] Haber, R.B.; Jog, C.S.; Bendsøe, M.P., A new approach to variable-topology shape design using a constraint on perimeter, Struct. multidiscip. optimiz., 11, 1-2, 1-12, (1996)
[43] Petersson, J.; Sigmund, O., Slope constrained topology optimization, Int. J. numer. methods engrg., 41, 8, 1417-1434, (1998) · Zbl 0907.73044
[44] Zhou, M.; Shyy, Y.K.; Thomas, H.L., Checkerboard and minimum member size control in topology optimization method, Struct. multidiscip. optimiz., 21, 2, 152-158, (2001)
[45] Osher, S.; Sethian, J.A., Front propagating with curvature dependent speed: algorithms based on the hamilton – jacobi formulations, J. comput. phys., 78, 12-49, (1988) · Zbl 0659.65132
[46] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. comput. phys., 114, 146-159, (1994) · Zbl 0808.76077
[47] Chang, Y.C.; Hou, T.Y.; Merriman, B.; Osher, S., A level set formulation of Eulerian interface capturing methods for incompressible fluid flow, J. comput. phys., 124, 449-464, (1996) · Zbl 0847.76048
[48] Susmman, M.; Puckett, E.G., A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J. comput. phys., 162, 301-337, (2000) · Zbl 0977.76071
[49] Son, G.; Dhir, V.K., Numerical simulation of film boiling near critical pressures with a level set method, J. heat transfer, 120, 183-192, (1998)
[50] Ye, J.C.; Bresler, Y.; Moulin, P., A self-referencing level-set method for image reconstruction from sparse Fourier samples, Int. J. comput. vis., 50, 253-270, (2002) · Zbl 1012.68783
[51] Tsai, R.; Osher, S., Level set methods and their applications in image science, Commun. math. sci., 1, 623-656, (2003) · Zbl 1080.94003
[52] Doel, K.; Ascher, U.M., On level set regularization for highly ill-posed distributed parameter estimation problems, J. comput. phys., 216, 707-723, (2006) · Zbl 1097.65112
[53] Sethian, J.A., Level set method and fast marching methods, Cambridge monographs on applied and computational mechanics, (1999), Cambridge University Press Cambridge, UK · Zbl 0973.76003
[54] Sethian, J.A.; Wiegmann, A., A structural boundary design via level-set and immersed interface methods, J. comput. phys., 163, 489-528, (2000) · Zbl 0994.74082
[55] Osher, S.; Santosa, F., Level-set methods for optimization problems involving geometry and constraints: frequencies of a two-density inhomogeneous drum, J. comput. phys., 171, 272-288, (2001) · Zbl 1056.74061
[56] Belytschko, T.; Xiao, S.P.; Parimi, C., Topology optimization with implicit functions and regularization, Int. J. numer. methods engrg., 57, 1177-1196, (2003) · Zbl 1062.74583
[57] Wang, M.Y.; Wang, X.; Guo, D., A level set method for structural topology optimization, Comput. methods appl. mech. engrg., 192, 227-246, (2003) · Zbl 1083.74573
[58] Wang, M.Y.; Wang, X., “color” level sets: a multi-phase method for structural topology optimization with multiple materials, Comput. methods appl. mech. engrg., 193, 469-496, (2004) · Zbl 1060.74585
[59] Luo, J.; Wang, Z.; Chen, S.; Tong, L.; Wang, M.Y., A new level set method for systematic design of hinge free compliant mechanisms, Comput. methods appl. mech. engrg., 198, 318-331, (2004) · Zbl 1194.74272
[60] Chen, S.; Wang, M.Y.; Liu, A.Q., Shape feature control in structural topology optimization, Comput.-aid. des., 40, 951-962, (2008)
[61] Allaire, G.; Jouve, F.; Toader, A.M., Structural optimization using sensitivity analysis and a level-set method, J. comput. phys., 194, 363-393, (2004) · Zbl 1136.74368
[62] Allaire, G.; Jouve, F., A level-set method for vibration and multiple loads structural optimization, Comput. methods appl. mech. engrg., 194, 3269-3290, (2005) · Zbl 1091.74038
[63] Chen, J.; Shapiro, V.; Tsukanov, K.I., Shape optimization with topological changes and parametric control, Int. J. numer. methods engrg., 71, 313-346, (2007) · Zbl 1194.74236
[64] Wang, S.Y.; Wang, M.Y., A moving superimposed finite element method for structural topology optimization, Int. J. numer. methods engrg., 65, 1892-1922, (2006) · Zbl 1174.74007
[65] Wei, P.; Wang, M.Y., Piecewise constant level set method for structural topology optimization, Int. J. numer. methods engrg., 78, 4, 379-402, (2008) · Zbl 1183.74222
[66] Luo, Z.; Tong, L.; Luo, J.; Wei, P.; Wang, M.Y., Design of piezoelectric actuators using a multiphase level set method of piecewise constants, J. comput. phys., 228, 2643-2659, (2009) · Zbl 1160.78322
[67] Luo, Z.; Tong, L.; Ma, H., Shape and topology optimization for electrothermomechanical microactuators using level set methods, J. comput. phys., 228, 3173-3181, (2009) · Zbl 1163.65045
[68] Park, S.; Min, S., Magnetic actuator design for maximizing force using level set based topology optimization, IEEE trans. magn., 45, 5, 2336-2339, (2009)
[69] Shim, H.; Ho, V.T.T.; Wang, S.; Tortorelli, D.A., Topological shape optimization of electromagnetic problems using level set method and radial basis function, Comput. model. engrg. sci., 37, 2, 175-202, (2008) · Zbl 1348.78029
[70] T. Yamada, S. Yamasaki, S. Nishiwaki, K. Izui, M. Yoshimura, Design of compliant thermal actuators using structural optimization based on the level set method, in: Proceedings of the ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2008), vol.1, 2008, pp.1217-1225, doi:10.1115/DETC2008-49618.
[71] Rong, J.H.; Liang, Q.Q., A level set method for topology optimization of continuum structures with bounded design domains, Comput. methods appl. mech. engrg., 197, 1447-1465, (2008) · Zbl 1194.74274
[72] Yamada, T.; Yamasaki, S.; Nishiwaki, S.; Izui, K.; Yoshimura, M., A study of boundary settings in the design domain for structural optimization based on the level set method, Trans. jpn. soc. indus. appl. math., 18, 3, 487-505, (2008)
[73] G. Allaire, F. Gournay, F. Jouve, A.M. Toader, Structural optimization using topological and shape sensitivity via a level set method. Internal Report 555, Ecole Polytechnique, France, 2004. · Zbl 1167.49324
[74] Eschenauer, H.A.; Kobelev, V.; Schumacher, A., Bubble method for topology and shape optimization of structures, Struct. optimiz., 8, 42-51, (1994)
[75] Sokolowski, J.; Zochowski, A., On the topological derivatives in shape optimization, SIAM J. control optimiz., 37, 1251-1272, (1999) · Zbl 0940.49026
[76] He, L.; Kao, C.Y.; Osher, S., Incorporating topological derivatives into shape derivatives based level set methods, J. comput. phys., 225, 891-909, (2007) · Zbl 1122.65057
[77] Novotny, A.A.; Feijóo, R.A.; Taroco, E.; Padra, C., Topological sensitivity analysis, Comput. methods appl. mech. engrg., 192, 803-829, (2003) · Zbl 1025.74025
[78] Wang, S.Y.; Lim, K.M.; Khoo, B.C.; Wang, M.Y., An extended level set method for shape and topology optimization, J. comput. phys., 221, 395-421, (2007) · Zbl 1110.65058
[79] Chopp, D.L., Computing minimal surfaces via level set curvature flow, J. comput. phys., 106, 77-91, (1993) · Zbl 0786.65015
[80] Sethian, J.A., Level set methods and fast marching methods, (1999), Cambridge University Press New York · Zbl 0929.65066
[81] sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. comput. phys., 114, 146-159, (1994) · Zbl 0808.76077
[82] Tikhonov, A.N.; Arsenin, V.Y., Solutions of ill-posed problems, (1997), Winston and Sons Washington, DC
[83] Braides, A., γ-convergence for beginners, Oxford lecture series in mathematics and its applications, vol. 22, (2002), Oxford University Press Oxford
[84] Leitao, A.; Scherzer, O., On the relation between constraint regularization, level sets and shape optimization, Inverse probl., 19, 1-11, (2003) · Zbl 1030.65062
[85] Ambrosio, L.; Buttazzo, G., An optimal design problem with perimeter penalization, Calc. var. part. differ. equat., 1, 1, 55-69, (1993) · Zbl 0794.49040
[86] Hestenes, M.R., Multiplier, gradient methods, J. optimiz. theory appl., 4, 5, 303-320, (1969) · Zbl 0174.20705
[87] Powell, M., A method for nonlinear constraints in minimization problems, optimization, (1969), Academic Press London, England, pp. 283-298
[88] Rockafellar, R.T., The multiplier method of hestenes and powell applied to convex programming, J. optimiz. theory appl., 12, 555-562, (1973) · Zbl 0254.90045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.