Liew, K. M.; Cheng, Yumin Complex variable boundary element-free method for two-dimensional elastodynamic problems. (English) Zbl 1231.74502 Comput. Methods Appl. Mech. Eng. 198, No. 49-52, 3925-3933 (2009). Summary: We proposed a new direct meshless boundary integral equation technique–the complex variable boundary element-free method (CVBEFM) based on the complex variable moving least-squares (CVMLS) approximation and the boundary element-free method (BEFM), to study the two-dimensional elastodynamic problems. With the CVMLS approximation, the trial function of a two-dimensional problem is formed with a one-dimensional basis function. The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-squares (MLS) approximation. Therefore it requires fewer nodes in the meshless method which formed from the CVMLS approximation than that formed from the MLS approximation with no lose of precision. The Laplace transform is used to formulate the boundary integral equations of the two-dimensional elastodynamics and then the formulae of the CVBEFM for two-dimensional elastodynamic problems are derived. The CVBEFM is a direct numerical method in which the basic unknown quantities are the real solutions of the nodal variables. Moreover in the CVBEFM, the boundary conditions can be applied directly and easily that leads to a greater computational precision. In this paper, we selected a few numerical examples to illustrate the applicability of the CVBEFM. Cited in 35 Documents MSC: 74S70 Complex-variable methods applied to problems in solid mechanics 74H15 Numerical approximation of solutions of dynamical problems in solid mechanics Keywords:moving least-squares (MLS) approximation; complex variable moving least-squares (CVMLS) approximation; boundary integral equation; meshless method; boundary element-free method (BEFM); complex variable boundary element-free method (CVBEFM); Laplace transform; elastodynamics PDF BibTeX XML Cite \textit{K. M. Liew} and \textit{Y. Cheng}, Comput. Methods Appl. Mech. Eng. 198, No. 49--52, 3925--3933 (2009; Zbl 1231.74502) Full Text: DOI References: [1] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless method: an overview and recent developments, Comput. Methods Appl. Mech. Engrg., 139, 3-47 (1996) · Zbl 0891.73075 [2] Liew, K. M.; Wu, Y. C.; Zou, G. P.; Ng, T. Y., Elasto-plasticity revisited: numerical analysis via reproducing kernel particle method and parametric quadratic programming, Int. J. Numer. Methods Engrg., 55, 669-683 (2002) · Zbl 1033.74050 [3] Liew, K. M.; Wu, H. Y.; Ng, T. Y., Meshless method for modeling of human proximal femur: treatment of nonconvex boundaries and stress analysis, Comput. Mech., 28, 390-400 (2002) · Zbl 1038.74053 [4] Liew, K. M.; Huang, Y. Q., Bending and buckling of thick symmetric rectangular laminates using the moving least-squares differential quadrature method, Int. J. Mech. Sci., 45, 95-114 (2003) · Zbl 1049.74022 [5] Liew, K. M.; Lim, H. K.; Tan, M. J.; He, X. Q., Analysis of laminated composite beams and plates with piezoelectric patches using the element-free Galerkin method, Comput. Mech., 29, 486-497 (2002) · Zbl 1146.74370 [6] Liew, K. M.; Ng, T. Y.; Zhao, X., Free vibration analysis of conical shells via the element-free kp-Ritz method, J. Sound Vib., 281, 627-645 (2005) [7] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int. J. Numer. Methods Engrg., 37, 229-256 (1994) · Zbl 0796.73077 [9] Liew, K. M.; Huang, Y. Q.; Reddy, J. N., Moving least squares differential quadrature method and its application to the analysis of shear deformable plates, Int. J. Numer. Methods Engrg., 56, 2331-2351 (2003) · Zbl 1062.74658 [10] Liew, K. M.; Huang, Y. Q.; Reddy, J. N., Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method, Comput. Methods Appl. Mech. Engrg., 192, 2203-2222 (2003) · Zbl 1119.74628 [11] Liu, W. K.; Chen, Y.; Uras, R. A., Generalized multiple scale reproducing kernel particle, Comput. Methods Appl. Mech. Engrg., 139, 91-157 (1996) · Zbl 0896.76069 [12] Liu, W. K.; Chen, Y. J., Wavelet and multiple scale reproducing kernel methods, Int. J. Numer. Methods Fluids, 21, 901-931 (1995) · Zbl 0885.76078 [13] Liew, K. M.; Chen, X. L., Mesh-free radial basis function method for buckling analysis of non-uniformly loaded arbitrarily shaped shear deformable plates, Comput. Methods Appl. Mech. Engrg., 193, 205-224 (2004) · Zbl 1075.74700 [14] Liew, K. M.; Chen, X. L., Mesh-free radial point interpolation method for the buckling analysis of Mindlin plates subjected to in-plane point loads, Int. J. Numer. Methods Engrg., 60, 1861-1877 (2004) · Zbl 1060.74669 [15] Liew, K. M.; Chen, X. L., Buckling of rectangular Mindlin plates subjected to partial in-plane edge loads using the radial point interpolation method, Int. J. Solids Struct., 41, 1677-1695 (2004) · Zbl 1075.74533 [16] Cheng, Yumin; Li, Jiuhong, A complex variable meshless method for fracture problems, Sci. China Ser. G Phys., Mech. Astron., 49, 1, 46-59 (2006) · Zbl 1147.74410 [17] Liew, K. M.; Feng, Cong; Cheng, Yumin; Kitipornchai, S., Complex variable moving least-squares method: a meshless approximation technique, Int. J. Numer. Methods Engrg., 70, 46-70 (2007) · Zbl 1194.74554 [18] Mukherjee, Y. X.; Mukherjee, S., The boundary node method for potential problems, Int. J. Numer. Methods Engrg., 40, 797-815 (1997) · Zbl 0885.65124 [19] Kothnur, V. S.; Mukherjee, S.; Mukherjee, Y. X., Two dimensional linear elasticity by the boundary node method, Int. J. Solids Struct., 36, 1129-1147 (1999) · Zbl 0937.74074 [20] Chati, M. K.; Mukherjee, S.; Mukherjee, Y. X., The boundary node method for three-dimensional linear elasticity, Int. J. Numer. Methods Engrg., 46, 1163-1184 (1999) · Zbl 0951.74075 [21] Chati, M. K.; Mukherjee, S., The boundary node method for three-dimensional problems in potential theory, Int. J. Numer. Methods Engrg., 47, 1523-1547 (2000) · Zbl 0961.65100 [22] Zhu, T.; Zhang, J.; Atluri, S. N., A meshless numerical method based on the local boundary integral equation (LBIE) to solve linear and non-linear boundary value problems, Engrg. Anal. Bound. Elem., 23, 375-389 (1999) · Zbl 0957.74077 [23] Atluri, S. N.; Sladek, J., The local boundary integral equation (LBIE) and it’s meshless implementation for linear elasticity, Comput. Mech., 25, 180-198 (2000) · Zbl 1020.74048 [24] Sladek, V.; Sladek, J.; Atluri, S. N.; Van Keer, R., Numerical integration of singularities in meshless implementation of local boundary integral equations, Comput. Mech., 25, 394-403 (2000) · Zbl 0973.74086 [25] Gu, Y. T.; Liu, G. R., A boundary point interpolation method for stress analysis of solids, Comput. Mech., 28, 47-54 (2000) · Zbl 1115.74380 [26] Zhang, Z.; Liew, K. M.; Cheng, Y. M., Coupling of the improved element-free Galerkin and boundary element method for 2D elastic problems, Engrg. Anal. Bound. Elem., 32, 100-107 (2008) · Zbl 1244.74204 [27] Gu, Y. T.; Liu, G. R., A boundary radial point interpolation method (BRPIM) for 2-D structural analyses, Struct. Engrg. Mech., 15, 535-550 (2003) [28] Liew, K. M.; Cheng, Yumin; Kitipornchai, S., Boundary element-free method (BEFM) and its application to two-dimensional elasticity problems, Int. J. Numer. Methods Engrg., 65, 8, 1310-1332 (2006) · Zbl 1147.74047 [29] Kitipornchai, S.; Liew, K. M.; Cheng, Yumin, A boundary element-free method (BEFM) for three-dimensional elasticity problems, Comput. Mech., 36, 1, 13-20 (2005) · Zbl 1109.74372 [30] Yumin, Cheng; Miaojuan, Peng, Boundary element-free method for elastodynamics, Sci. China Ser. G Phys., Mech. Astron., 48, 6, 641-657 (2005) · Zbl 1082.74022 [31] Liew, K. M.; Cheng, Yumin; Kitipornchai, S., Boundary element-free method (BEFM) for two-dimensional elastodynamics analysis using Laplace transform, Int. J. Numer. Methods Engrg., 64, 12, 1610-1627 (2005) · Zbl 1122.74533 [32] Liew, K. M.; Cheng, Yumin; Kitipornchai, S., Analyzing the 2D fracture problems via the enriched boundary element-free method, Int. J. Solids Struct., 44, 4220-4233 (2007) · Zbl 1346.74162 [33] Lancaster, P.; Salkauskas, K., Surface generated by moving least squares methods, Math. Comput., 37, 141-158 (1981) · Zbl 0469.41005 [34] Cheng, Yumin; Peng, Miaojuan; Li, Jiuhong, The complex variable moving least-squares approximation and its application, Chinese J. Theor. Appl. Mech., 37, 1-5 (2005) [35] Durbin, F., Numerical inversion of Laplace transform: an efficient improvement to Dubner and Abate’s method, Comput. J., 17, 371-376 (1974) · Zbl 0288.65072 [36] Manolis, G. D.; Beskos, D. E., Boundary Element Methods in Elastodynamics (1988), Unwin Hyman Ltd.: Unwin Hyman Ltd. London · Zbl 0487.73105 [37] Cheng, Yumin; Ji, Xing, An investigation on a new integral transform-boundary element methods for elastodynamics, Acta Mech. Solida Sinica, 10, 3, 246-254 (1997) [38] Eringen, A. C.; Suhubi, E. S., Elastodynamics, Linear Theory, vol. 2 (1975), Academic Press: Academic Press New York · Zbl 0344.73036 [39] Rashed, Youssef F., BEM for dynamic analysis using compact supported radial basis functions, Comput. Struct., 80, 1351-1367 (2002) [40] Murti, V.; Valliappan, S., The use of quarter point element in dynamic crack analysis, Engrg. Fract. Mech., 23, 3, 585-614 (1986) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.