Yan, Zhenya Periodic, solitary and rational wave solutions of the 3D extended quantum Zakharov-Kuznetsov equation in dense quantum plasmas. (English) Zbl 1231.76362 Phys. Lett., A 373, No. 29, 2432-2437 (2009). Summary: The three-dimensional extended quantum Zakharov-Kuznetsov (ZK) equation was investigated in dense quantum plasmas which arises from the dimensionless hydrodynamics equations describing the nonlinear propagation of the quantum ion-acoustic waves. With the aid of symbolic computation, many types of new analytical solutions of the extended quantum ZK equation are constructed in terms of some powerful ansatze, which include new doubly periodic wave, solitary wave, shock wave, rational wave, and singular wave solutions. Moreover, we analyze the nonlinear wave propagation of the obtained solutions for some chosen parameters. Cited in 19 Documents MSC: 76X05 Ionized gas flow in electromagnetic fields; plasmic flow 76Y05 Quantum hydrodynamics and relativistic hydrodynamics 35Q53 KdV equations (Korteweg-de Vries equations) 35Q51 Soliton equations 35C07 Traveling wave solutions 35C08 Soliton solutions 76B25 Solitary waves for incompressible inviscid fluids Keywords:quantum plasmas; extended quantum Zakharov-Kuznetsov equation; periodic waves; solitary waves; rational solutions PDF BibTeX XML Cite \textit{Z. Yan}, Phys. Lett., A 373, No. 29, 2432--2437 (2009; Zbl 1231.76362) Full Text: DOI References: [1] Manfredi, G., Fields Inst. Commun., 46, 263 (2005) [2] Haas, F.; Garcia, L. G.; Goedert, J.; Manfredi, G., Phys. Plasmas, 10, 3858 (2003) [3] Garcia, L. G.; Haas, F.; Goedert, J.; Oliveira, L. P.L., Phys. Plasmas, 12, 012302 (2005) [4] Haas, F., Phys. Plasmas, 14, 042309 (2007) [5] Shukla, P. K.; Eliasson, B., Phys. Rev. Lett., 96, 245001 (2006) [6] Moslem, W. M.; Shukla, P. K.; Ali, S.; Schlickeiser, R., Phys. Plasmas, 14, 042107 (2007) [7] Shukla, P. K.; Ali, S., Phys. Plasmas, 12, 114502 (2005) [8] Haas, F., Phys. Plasmas, 12, 062117 (2005) [9] Ali, S.; Moslem, W. M.; Shukla, P. K.; Kourakis, I., Phys. Lett. A, 366, 606 (2007) [10] Moslem, W. M.; Ali, S.; Shukla, P. K.; Tang, X. Y.; Rowlands, G., Phys. Plasmas, 14, 082308 (2007) [11] Ulyanova, V. G.; Sanin, A. L., Proc. SPIE, 6597, 659709 (2006) [12] El-Taibany, W. F.; Wadati, M., Phys. Plasmas, 14, 042302 (2007) [13] Khan, S. A.; Mushtaq, A.; Masood, W., Phys. Plasmas, 15, 013701 (2008) [14] El-Kalaawya, O. H.; Ibrahimb, R. S., Phys. Plasmas, 15, 072303 (2008) [15] Sabry, R.; Moslem, W. M.; Haas, F.; Ali, S.; Shukla, P. K., Phys. Plasmas, 15, 122308 (2008) [16] Sadiq, M.; Ali, S.; Sabry, R., Phys. Plasmas, 16, 013706 (2009) [17] Lawden, D. F., Elliptic Function and Application (1989), Springer-Verlag: Springer-Verlag New York · Zbl 0042.01504 [18] Yan, Z. Y., Phys. Scr., 78, 035001 (2008) [19] Raju, T. S.; Kumar, C. N.; Panigrahi, P. K., J. Phys. A, 38, L271 (2005) · Zbl 1070.35093 [20] Yan, Z. Y., J. Phys. A, 39, L401 (2006) · Zbl 1096.81008 [21] Yan, Z. Y., Constructive Theory and Applications in the Complex Nonlinear Waves (2007), Science Press: Science Press Beijing This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.