zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An inverse measurement of the sudden underwater movement of the sea-floor by using the time-history record of the water-wave elevation. (English) Zbl 1231.86014
Summary: An inverse problem is formulated for (indirectly) measuring the sudden movement of the sea-floor by using a time-history record of the resulting water-wave elevation. The measurement problem is shown to have a unique solution, which can correspond to the real physical wave-source of the sudden movement of the sea-floor. However, the problem formulated herein is concerned with a Fredholm integral equation of the first kind. This leads to a peculiar-and unwelcome-phenomenon involving numerical instability in the solution of the integral equation because the solution of the first-kind integral equation lacks the stability property. Topologically, we are faced with a completely different mathematical solution-structure that is ill-posed in the sense of stability compared to the usual, well-posed problems. A solution-stability property is artificially inserted into the formulated (measurement) problem to find a stabilized solution: this is realized by introducing Landweber-Fridman’s regularization method in this study. The workability of the suggested measurement is investigated through a numerical experiment.

86A22Inverse problems in geophysics
35R30Inverse problems for PDE
76B15Water waves, gravity waves; dispersion and scattering, nonlinear interaction
Full Text: DOI
[1] Mei, C. C.: The applied dynamics of ocean surface waves, (1989) · Zbl 0991.76003
[2] Stoker, J. J.: Water waves, (1992) · Zbl 0812.76002
[3] Whitham, G. B.: Linear and nonlinear waves, (1999) · Zbl 0940.76002
[4] Mehaute, B. L.; Wang, S.: Water waves generated by underwater explosion, (1996) · Zbl 0857.76002
[5] Sotiropoulos, D. A.; Achenbach, J. D.: Crack characterization by an inverse scattering method, International journal of solids and structures 24, 165-175 (1988) · Zbl 0629.73085 · doi:10.1016/0020-7683(88)90027-3
[6] Achenbach, J. D.; Viswanathan, K.; Norris, A.: An inversion integral for crack-scattering data, Wave motion 1, 299-316 (1979) · Zbl 0418.73086 · doi:10.1016/0165-2125(79)90007-6
[7] Cheney, M.; Isaacson, D.: Inverse problems for a perturbed dissipative half-space, Inverse problems 11, 865-888 (1995) · Zbl 0842.35135 · doi:10.1088/0266-5611/11/4/015
[8] Mazzucato, A. L.; Rachele, L. V.: On uniqueness in the inverse problem for transversely isotropic elastic media with a disjoint wave mode, Wave motion 44, 605-625 (2007) · Zbl 1231.35309 · doi:10.1016/j.wavemoti.2007.03.004
[9] Janno, J.; Engelbrecht, J.: Waves in microstructured solids: inverse problems, Wave motion 43, 1-11 (2005) · Zbl 1231.74197 · doi:10.1016/j.wavemoti.2005.04.006
[10] Dominguez, N.; Gibiat, V.; Esquerre, Y.: Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection, Wave motion 42, 31-52 (2005) · Zbl 1189.74070 · doi:10.1016/j.wavemoti.2004.09.005
[11] Hellsten, H.; Maz’ya, V.; Vainberg, B.: The spectrum of water waves produced by moving point sources, and a related inverse problem, Wave motion 38, 345-354 (2003) · Zbl 1163.74368 · doi:10.1016/S0165-2125(03)00066-0
[12] Kirsch, A.: An introduction to the mathematical theory of inverse problems, (1996) · Zbl 0865.35004
[13] Tikhonov, A. N.: Solution of incorrectly formulated problems and the regularization method, Soviet mathematical doklady 4, 1035-1038 (1963) · Zbl 0141.11001
[14] Kammerer, W. J.; Nashed, M. Z.: Iterative methods for best approximate solutions of integral equations of the first and second kinds, Journal of mathematicla analysis and applications 40, 547-573 (1972) · Zbl 0246.45015 · doi:10.1016/0022-247X(72)90002-9
[15] Landweber, L.: An iteration formula for Fredholm integral equations of the first kind, American journal of mathematics 73, 615-624 (1951) · Zbl 0043.10602 · doi:10.2307/2372313
[16] Hochstadt, H.: Integral equations, (1973) · Zbl 0259.45001
[17] Groetsch, C. W.: Inverse problems in the mathematical sciences, (1993) · Zbl 0779.45001
[18] Roman, P.: Some modern mathematics for physicists and other outsiders, (1975) · Zbl 0341.00004
[19] Jang, T. S.; Han, S. L.: Application of Tikhonov’s regularization to an unstable two dimensional water waves: spectrum with compact support, Ships and offshore structures 3, 41-47 (2008)
[20] Jang, T. S.; Kinoshita, T.: An ill-posed inverse problem of a wing with locally given velocity data and its analysis, Journal of marine science and technology 5, 16-20 (2000)
[21] Jang, T. S.; Choi, H. S.; Kinoshita, T.: Numerical experiments on an ill-posed inverse problem for a given velocity around a hydrofoil by iterative and noniterative regularizations, Journal of marine science and technology 5, 107-111 (2000)
[22] Jang, T. S.; Choi, H. S.; Kinoshita, T.: Solution of an unstable inverse problem: wave source evaluation from observation of velocity distribution, Journal of marine science and technology 5, 181-188 (2000)
[23] Jang, T. S.; Kwon, S. H.; Kim, B. J.: Solution of an unstable axisymmetric Cauchy -- Poisson problem of dispersive water waves for a spectrum with compact support, Ocean engineering 34, 676-684 (2007)
[24] Jang, T. S.; Sung, H. G.; Han, S. L.; Kwon, S. H.: Inverse determination of the loading source of the infinite beam on elastic foundation, Journal of mechanical science and technology 22, 2350-2356 (2008)
[25] Spiegel, M. R.: Mathematical handbook, (1968)
[26] Hansen, P. C.: Analysis of discrete ill-posed problems by means of the L-curve, SIAM review 34, 561-580 (1992) · Zbl 0770.65026 · doi:10.1137/1034115