zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On a generalized Ky Fan inequality and asymptotically strict pseudocontractions in the intermediate sense. (English) Zbl 1231.90380
In this paper, one considers the problem of finding a common solution of $m$ equilibrium problems (also called “generalized Ky Fan inequalities”), $m$ variational inequalities, and a fixed point problem. Two iterative algorithms are given that provide sequences converging strongly (for the first algorithm) or weakly (for the second algorithm) to a common solution of these problems.

MSC:
90C47Minimax problems
47H05Monotone operators (with respect to duality) and generalizations
47H09Mappings defined by “shrinking” properties
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
WorldCat.org
Full Text: DOI
References:
[1] Burachik, R.S., Lopez, J.O.: A convergence result for an outer approximation scheme. Comput. Appl. Math. 22, 397--409 (2003) · Zbl 1215.47059 · doi:10.1590/S0101-82052003000300005
[2] Izmaelov, A.F., Solodov, M.V.: An active set Newton method for mathematical program with complementary constraints. SIAM J. Optim. 19, 1003--1027 (2008) · Zbl 1201.90193 · doi:10.1137/070690882
[3] Maingé, P.E., Moudafi, A.: Strong convergence of an iterative method for hierarchical fixed-point problems. Pac. J. Optim. 3, 529--538 (2007) · Zbl 1158.47057
[4] Yamada, I., Ogura, N.: Hybrid steepest descent method for the variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings. Numer. Funct. Anal. Optim. 25, 619--655 (2004) · Zbl 1095.47049 · doi:10.1081/NFA-200045815
[5] Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367--426 (1996) · Zbl 0865.47039 · doi:10.1137/S0036144593251710
[6] Combettes, P.L.: The convex feasibility problem in image recovery. In: Hawkes, P. (ed.) Advances in Imaging and Electron Physics. vol. 95, pp. 155--270. Academic Press, New York (1996).
[7] Kotzer, T., Cohen, N., Shamir, J.: Image restoration by a novel method of parallel projection onto constraint sets. Optim. Lett. 20, 1772--1774 (1995)
[8] Youla, D.C.: Mathematical theory of image restoration by the method of convex projections. In: Stark, H. (ed.) Image Recovery: Theory and Applications, pp. 29--77. Academic Press, New York (1987)
[9] Kim, T.W., Xu, H.K.: Convergence of the modified Mann’s iteration method for asymptotically strict pseudo-contractions. Nonlinear Anal. 68, 2828--2836 (2008) · Zbl 1220.47100 · doi:10.1016/j.na.2007.02.029
[10] Marino, G., Xu, H.K.: Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl. 329, 336--346 (2007) · Zbl 1116.47053 · doi:10.1016/j.jmaa.2006.06.055
[11] Sahu, D.R., Xu, H.K., Yao, J.C.: Asymptotically strict pseudocontractive mappings in the intermediate sense. Nonlinear Anal. 70, 3502--3511 (2009) · Zbl 1221.47122 · doi:10.1016/j.na.2008.07.007
[12] Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274--276 (1979) · Zbl 0423.47026 · doi:10.1016/0022-247X(79)90024-6
[13] Genel, A., Lindenstrass, J.: An example concerning fixed points. Isr. J. Math. 22, 81--86 (1975) · Zbl 0314.47031 · doi:10.1007/BF02757276
[14] Martinez-Yanes, C., Xu, H.K.: Strong convergence of the CQ method for fixed point iteration processes. Nonlinear Anal. 64, 2400--2411 (2006) · Zbl 1105.47060 · doi:10.1016/j.na.2005.08.018
[15] Nakajo, K., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl. 279, 372--379 (2003) · Zbl 1035.47048 · doi:10.1016/S0022-247X(02)00458-4
[16] Qin, X., Cho, S.Y., Kang, S.M.: On hybrid projection methods for asymptotically quasi-{$\phi$}-nonexpansive mappings. Appl. Math. Comput. 215, 3874--3883 (2010) · Zbl 1225.47105 · doi:10.1016/j.amc.2009.11.031
[17] Qin, X., Cho, Y.J., Kang, S.M., Zhou, H.: Convergence theorems of common fixed points for a family of Lipschitz quasi-pseudocontractions. Nonlinear Anal. 71, 685--690 (2009) · Zbl 1168.47304 · doi:10.1016/j.na.2008.10.102
[18] Qin, X., Cho, Y.J., Kang, S.M., Zhou, H.: Convergence of a modified Halpern-type iteration algorithm for quasi-{$\phi$}-nonexpansive mappings. Appl. Math. Lett. 22, 1051--1055 (2009) · Zbl 1179.65061 · doi:10.1016/j.aml.2009.01.015
[19] Qin, X., Su, Y.: Strong convergence theorems for relatively nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 1958--1965 (2007) · Zbl 1124.47046 · doi:10.1016/j.na.2006.08.021
[20] Takahashi, W., Takeuchi, Y., Kubota, R.: Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 341, 276--286 (2008) · Zbl 1134.47052 · doi:10.1016/j.jmaa.2007.09.062
[21] Haugazeau, Y.: Sur les inéquations variationnelles et la minimisation de fonctionnelles convexes. Ph.D. Thesis, Université de Paris (1968)
[22] Kumam, P.: A hybrid approximation method for equilibrium and fixed point problems for a monotone mapping and a nonexpansive mapping. Nonlinear Anal. 2, 1245--1255 (2008) · Zbl 1163.49003
[23] Tada, A., Takahashi, W.: Weak and strong convergence theorem for an equilibrium problem and a nonexpansive mapping. J. Optim. Theory Appl. 133, 359--370 (2007) · Zbl 1147.47052 · doi:10.1007/s10957-007-9187-z
[24] Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417--428 (2003) · Zbl 1055.47052 · doi:10.1023/A:1025407607560
[25] Fan, K.: A minimax inequality and applications. In: Shisha, O. (ed.) Inequality III, pp. 103--113. Academic Press, New York (1972) · Zbl 0302.49019
[26] Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123--145 (1994) · Zbl 0888.49007
[27] Brézis, H., Nirenberg, L., Stampacchia, G.: A remark on Ky Fan’s minimax principle. Boll. Unione Mat. Ital. 6(4), 293--300 (1972) · Zbl 0264.49013
[28] Bianchi, M., Schaible, S.: Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl. 90, 31--43 (1996) · Zbl 0903.49006 · doi:10.1007/BF02192244
[29] Konnov, I.V., Yao, J.C.: On the generalized vector variational inequality problem. J. Math. Anal. Appl. 206, 42--58 (1997) · Zbl 0878.49006 · doi:10.1006/jmaa.1997.5192
[30] Chadli, O., Wong, N.C., Yao, J.C.: Equilibrium problems with applications to eigenvalue problems. J. Optim. Theory Appl. 117, 245--266 (2003) · Zbl 1141.49306 · doi:10.1023/A:1023627606067
[31] Chang, S.S., Lee, H.W.J., Chan, C.K.: A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Anal. 70, 3307--3319 (2009) · Zbl 1198.47082 · doi:10.1016/j.na.2008.04.035
[32] Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117--136 (2005) · Zbl 1109.90079
[33] Moudafi, A.: Second-order differential proximal methods for equilibrium problems. J. Inequal. Pure Appl. Math. 4, 18 (2003) · Zbl 1175.90413
[34] Goebel, K., Kirk, W.A.: A fixed point theorem for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 35, 171--174 (1972) · Zbl 0256.47045 · doi:10.1090/S0002-9939-1972-0298500-3
[35] Kirk, W.A.: Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type. Isr. J. Math. 17, 339--346 (1974) · Zbl 0286.47034 · doi:10.1007/BF02757136
[36] Bruck, R.E., Kuczumow, T., Reich, S.: Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property. Colloq. Math. 65, 169--179 (1993) · Zbl 0849.47030
[37] Xu, H.K.: Existence and convergence for fixed points of mappings of asymptotically nonexpansive type. Nonlinear Anal. 16, 1139--1146 (1991) · Zbl 0747.47041 · doi:10.1016/0362-546X(91)90201-B
[38] Browder, F.E., Petryshyn, W.V.: Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. 20, 197--228 (1967) · Zbl 0153.45701 · doi:10.1016/0022-247X(67)90085-6
[39] Qihou, L.: Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings. Nonlinear Anal. 26, 1835--1842 (1996) · Zbl 0861.47047 · doi:10.1016/0362-546X(94)00351-H
[40] Schu, J.: Iterative construction of fixed points of asymptotically nonexpansive mappings. J. Math. Anal. Appl. 158, 407--413 (1991) · Zbl 0734.47036 · doi:10.1016/0022-247X(91)90245-U
[41] Cho, Y.J., Qin, X., Kang, J.I.: Convergence theorems based on hybrid methods for generalized equilibrium problems and fixed point problems. Nonlinear Anal. 71, 4203--4214 (2009) · Zbl 1219.47105 · doi:10.1016/j.na.2009.02.106
[42] Inchan, I., Nammanee, K.: Strong convergence theorems by hybrid method for asymptotically k-strict pseudo-contractive mapping in Hilbert space. Nonlinear Anal. 3, 380--385 (2009) · Zbl 1223.47079
[43] Kumam, K., Petrot, N., Wangkeeree, R.: A hybrid iterative scheme for equilibrium problems and fixed point problems of asymptotically k-strict pseudo-contractions. J. Comput. Appl. Math. 233, 2013--2026 (2010) · Zbl 1185.65094 · doi:10.1016/j.cam.2009.09.036
[44] Qin, X., Cho, Y.J., Kang, S.M.: Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces. J. Comput. Appl. Math. 225, 20--30 (2009) · Zbl 1165.65027 · doi:10.1016/j.cam.2008.06.011
[45] Qin, X., Cho, S.Y., Kang, S.M.: Strong convergence of shrinking projection methods for quasi-{$\phi$}-nonexpansive mappings and equilibrium problems. J. Comput. Appl. Math. 234, 750--760 (2010) · Zbl 1189.47068 · doi:10.1016/j.cam.2010.01.015
[46] Takahashi, W., Zembayashi, K.: Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces. Nonlinear Anal. 70, 45--57 (2009) · Zbl 1170.47049 · doi:10.1016/j.na.2007.11.031
[47] Jung, J.S.: Strong convergence of iterative methods for k-strictly pseudo-contractive mappings in Hilbert spaces. Appl. Math. Comput. 215, 3746--3753 (2010) · Zbl 1236.47071 · doi:10.1016/j.amc.2009.11.015
[48] Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75--88 (1970) · Zbl 0222.47017 · doi:10.1090/S0002-9947-1970-0282272-5
[49] Schu, J.: Weak and strong convergence of fixed points of asymptotically nonexpansive mappings. Bull. Aust. Math. Soc. 43, 153--159 (1991) · Zbl 0709.47051 · doi:10.1017/S0004972700028884
[50] Tan, K.K., Xu, H.K.: Approximating fixed points of nonexpansive mappings by the Ishikawa iterative process. J. Math. Anal. Appl. 178, 301--308 (1993) · Zbl 0895.47048 · doi:10.1006/jmaa.1993.1309