×

A dynamic network in a dynamic population: asymptotic properties. (English) Zbl 1231.92054

Summary: We derive asymptotic properties for a stochastic dynamic network model in a stochastic dynamic population. In this model, nodes give birth to new nodes until they die, each node being equipped with a social index given at birth. During the life of a node it creates edges to other nodes, nodes with high social index at higher rate, and edges disappear randomly in time. For this model, we derive a criterion for when a giant connected component exists after the process has evolved for a long period of time, assuming that the node population grows to infinity. We also obtain an explicit expression for the degree correlation \(\rho\) (of neighbouring nodes) which shows that \(\rho\) is always positive irrespective of parameter values in one of the two treated submodels, and may be either positive or negative in the other model, depending on the parameters.

MSC:

92D25 Population dynamics (general)
60J85 Applications of branching processes
05C80 Random graphs (graph-theoretic aspects)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286 , 509-512. · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[2] Barabási, A.-L., Albert, R. and Jeong, H. (1999). Mean-field theory for scale-free random networks. Physica A , 272 , 173-187.
[3] Bollobás, B., Janson, S. and Riordan, O. (2007). The phase transition in inhomogeneous random graphs. Random Structures Algorithms 31 , 3-122. · Zbl 1123.05083 · doi:10.1002/rsa.20168
[4] Bollobás, B., Janson, S. and Riordan, O. (2011). Sparse random graphs with clustering. Random Structures Algorithms , 38 , 269-323. · Zbl 1220.05117 · doi:10.1002/rsa.20322
[5] Britton, T. and Lindholm, M. (2010). Dynamic random networks in dynamic populations. J. Statist. Phys. 139 , 518-535. · Zbl 1190.82037 · doi:10.1007/s10955-010-9952-5
[6] Callaway, D. S. \et (2001). Are randomly grown graphs really random? Phys. Rev. E 64 , 041902, 7 pp.
[7] Haccou, P., Jagers, P. and Vatutin, V. A. (2005). Branching Processes: Variation, Growth, and Extinction of Populations . Cambridge University Press. · Zbl 1118.92001 · doi:10.1017/CBO9780511629136
[8] Malyshev, V. A. (1998). Random graphs and grammars on graphs. Discrete Math. Appl. 8 , 247-262. · Zbl 0966.68160 · doi:10.1515/dma.1998.8.3.247
[9] Newman, M. E. J. (2002). Assortative Mixing in Networks. Phys. Rev. Lett. 89 , 208701, 4 pp.
[10] Turova, T. S. (2002). Dynamical random graphs with memory. Phys. Rev. E 65 , 066102, 9 pp. · doi:10.1103/PhysRevE.65.066102
[11] Turova, T. S. (2003). Long paths and cycles in dynamical graphs. J. Statist. Phys. 110 , 385-417. · Zbl 1014.60096 · doi:10.1023/A:1021035131946
[12] Turova, T. S. (2006). Phase transitions in dynamical random graphs. J. Statist. Phys. 123 , 1007-1032. · Zbl 1113.82052 · doi:10.1007/s10955-006-9101-3
[13] Turova, T. S. (2007). Continuity of the percolation threshold in randomly grown graphs. Electron. J. Prob. 12 , 1036-1047. · Zbl 1127.05095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.