×

zbMATH — the first resource for mathematics

Decentralized robust control for multiconnected objects with structural uncertainty. (English. Russian original) Zbl 1231.93006
Autom. Remote Control 71, No. 12, 2595-2604 (2010); translation from Avtom. Telemekh. 2010, No. 12, 111-121 (2010).
Summary: We solve the problem of constructing a decentralized robust regulating system for a multiconnected control object that provides for compensating interconnections in local subsystems and also parametric and external bounded perturbations, compensating with precision \(\delta\) if one does not measure the derivatives of the local subsystems output vector and in full if the derivatives are measured.
MSC:
93A14 Decentralized systems
93B35 Sensitivity (robustness)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.
[2] Bukov, V.N., Vlozhenie sistem. Analiticheskii podkhod k analizu i sintezu matrichnykh sistem (System Embedding. An Analytic Approach to the Analysis and Synthesis of Matrix Systems), Kaluga: Izd. Bochkarevoi, 2006.
[3] Dmitriev, M.G. and Kurina, G.A., Singular Perturbations in Control Problems, Autom. Remote Control, 2006, vol. 67, no. 1, pp. 1–46. · Zbl 1126.93301 · doi:10.1134/S0005117906010012
[4] Bobtsov, A.A. and Nikolaev, N.A., Output Control of Linear Systems with Unmodeled Dynamics, Autom. Remote Control, 2009, vol. 70, no. 6, pp. 1019–1025. · Zbl 1181.93054 · doi:10.1134/S0005117909060083
[5] Shchipanov, G.V., Design Theory and Methods for Automatic Regulators, Avtom. Telemekh., 1939, no. 1, pp. 49–66.
[6] Petrov, B.N., On Implementing Invariance Conditions, Proc. of the 1st All-Union Workshop on Invariance Theory, Kiev: Akad. Nauk USSR, 1959, pp. 59–80.
[7] Meerov, M.V., Sistemy mnogosvyaznogo regulirovaniya (Multiconnected Control Systems), Moscow: Nauka, 1965.
[8] Nikiforov, V.O., Nonlinear Control System with Compensation of External Deterministic Perturbations, J. Comp. Syst. Sci. Inter., 1997, vol. 36, no. 4, pp. 564–568. · Zbl 0900.93182
[9] Tsykunov, A.M., Adaptivnoe i robastnoe upravlenie dinamicheskimi ob”ektami po vykhodu (Adaptive and Robust Output Control for Dynamic Objects), Moscow: Fizmatlit, 2009.
[10] Nikiforov, V.O., Adaptivnoe i robastnoe upravlenie s kompensatsiei vozmushchenii (Adaptive and Robust Control with Perturbation Compensation), St. Petersburg: Nauka, 2003.
[11] Nazin, S.A., Polyak, B.T., and Topunov, M.V., Rejection of Bounded Exogenous Perturbations by the Method of Invariant Ellipsoids, Autom. Remote Control, 2007, vol. 68, no. 3, pp. 467–486. · Zbl 1125.93370 · doi:10.1134/S0005117907030083
[12] Bukov, V.N. and Sel’vesyuk, N.I., Analytical Design of the Robust Controllers by Parameterization of the Lur’e-Riccati Equation, Autom. Remote Control, 2007, vol. 68, no. 2, pp. 214–223. · Zbl 1125.93060 · doi:10.1134/S0005117907020026
[13] Bobtsov, A.A., An Algorithm of Robust Output-Based Control of Linear Object with Compensation of an Unknown Deterministic Disturbance, J. Comp. Syst. Sci. Inter., 2003, vol. 42, no. 2, pp. 251–255. · Zbl 1110.93377
[14] Tsykunov, A.M., Robust Control Algorithms with Compensation of Bounded Perturbations, Autom. Remote Control, 2007, vol. 68, no. 7, pp. 1213–1224. · Zbl 1141.93026 · doi:10.1134/S0005117907070090
[15] Tao, G. and Ioannou, P.A., Model Reference Adaptive Control for Plants with Unknown Relative Degree, IEEE Trans. Automat. Control, vol. 38, no. 6, 1993, pp. 976–982. · Zbl 0786.93063 · doi:10.1109/9.222314
[16] Hoagg, J.B., Direct Adaptive Command Following and Perturbation Rejection for Minimum Phase Systems with Unknown Relative Degree, Int. J. Adaptiv. Control Signal Proc., 2007, vol. 21, no. 1, pp. 49–75. · Zbl 1134.93042 · doi:10.1002/acs.945
[17] Furtat, I.B. and Tsykunov, A.M., Robust Control for Nonstationary Nonlinear Structurally Uncertain Objects, Probl. Upravlen., 2008, no. 5, pp. 2–7.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.