×

zbMATH — the first resource for mathematics

Rapid convergence to frequency for substitution tilings of the plane. (English) Zbl 1232.05049
Summary: This paper concerns self-similar tilings of the Euclidean plane. We consider the number of occurrences of a given tile in any domain bounded by a Jordan curve. For a large class of self-similar tilings, including many well-known examples, we give estimates of the oscillation of this number of occurrences around its average frequency times the total number of tiles in the domain, which depend only on the Jordan curve.

MSC:
05B45 Combinatorial aspects of tessellation and tiling problems
52C20 Tilings in \(2\) dimensions (aspects of discrete geometry)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Adamczewski B.: Symbolic discrepancy and self-similar dynamics (discrépance symbolique et dynamiques auto-similaires). Ann. de l’Inst. Fourier 54(7), 2201–2234 (2004) · Zbl 1066.11032
[2] Anderson J., Putnam I.: Topological invariants for substitution tilings and their associated c *-algebras. Erg. Th. Dyn. Syst. 18(3), 509–537 (1998) · Zbl 1053.46520
[3] Aliste-Prieto, J., Coronel, D.: Tower systems for linearly repetitive Delone sets. Erg. Th. Dyn. Sys. doi: 10.1017/S0143385710000507 , Nov. 2010 · Zbl 1253.37016
[4] Bellissard, J.: The noncommutative geometry of aperiodic solids. In: Geometric and topological methods for quantum field theory (Villa de Leyva, 2001), pages 86–156. River Edge, NJ: World Sci. Publ., 2003 · Zbl 1055.81034
[5] Bindi L., Steinhardt P.J., Yao N., Lu P.J.: Natural Quasicrystals. Science 324(5932), 1306 (2009)
[6] Clark A., Sadun L.: When shape matters: deformations of tiling spaces. Erg. Th. Dyn. Sys. 26(1), 69–86 (2006) · Zbl 1085.37011
[7] Pytheas Fogg, N.: Substitutions in dynamics, arithmetics and combinatorics. Edited by V. Berthé, S. Ferenczi, C. Mauduit A. Siegel, Volume 1794 of Lecture Notes in Mathematics. Berlin: Springer-Verlag, 2002. · Zbl 1014.11015
[8] Grünbaum B., Shephard G.C.: Tilings and patterns. W. H. Freeman and Company, Newyork (1987) · Zbl 0601.05001
[9] Horn R.A., Johnson Ch.R.: Matrix analysis. Cambridge University Press, Cambridge (1990) · Zbl 0704.15002
[10] Iooss, G., Joseph, D.: Elementary stability and bifurcation theory. 2nd ed. Undergraduate Texts in Mathematics. New York: Springer-Verlag, 1990 · Zbl 0691.34002
[11] Kellendonk, J., Putnam, I.F.: Tilings, C *-algebras, and K-theory. In: Directions in mathematical quasicrystals, Volume 13, CRM Monogr. Ser., Providence, RI: Amer. Math. Soc., 2000, pp. 177–206
[12] Lagarias J.C., Pleasants P.A.B.: Repetitive Delone sets and quasicrystals. Erg. Th. Dyn. Sys. 23(3), 831–867 (2003) · Zbl 1062.52021
[13] Lee J.-Y., Moody R.V., Solomyak B.: Pure point dynamical and diffraction spectra. Ann. H. Poincare 3(5), 1003–1018 (2002) · Zbl 1025.37004
[14] Penrose, R.: Pentaplexity: a class of nonperiodic tilings of the plane. Math. Intelligencer 2(1), 32–37 (1979/80) · Zbl 0426.52005
[15] Peyriére, J.: Frequency of patterns in certain graphs and in Penrose tilings. At: Intl workshop on aperidic Les Houches, 1986 J. Physique 47(7, Suppl. Colloq. C3), 41–61 (1986) · Zbl 0693.52005
[16] Priebe Frank N., Sadun L.: Topology of some tiling spaces without finite local complexity. Disc. Con. Dyn. Syst. 23(3), 847–865 (2009) · Zbl 1154.37317
[17] Radin C.: The pinwheel tilings of the plane. Ann. of Math. (2) 139(3), 661–702 (1994) · Zbl 0808.52022
[18] Rauzy G.: Nombres algébriques et substitutions. Bull. Soc. Math. France 110(2), 147–178 (1982) · Zbl 0522.10032
[19] Robinson E.A. Jr.: On the table and the chair. Indag. Math. 10(4), 581–599 (1999) · Zbl 1024.37009
[20] Robinson, Jr. E.A.: Symbolic dynamics and tilings of $${{\(\backslash\)mathbb R}\^d}$$ . In: Symbolic dynamics and its applications, Volume 60, Proc. Sympos. Appl. Math., Providence, RI: Amer. Math. Soc., 2004, pp. 81–119 · Zbl 1076.37010
[21] Shechtman D., Blech I., Gratias D., Cahn J.W.: Metallic phase with long range orientational order and no translational symetry. Phys. Rev. Lett. 53(20), 1951–1954 (1984)
[22] Senechal, M.: Quasicrystals and geometry. Cambridge: Cambridge University Press, 1995 · Zbl 0828.52007
[23] Seneta, E.: Nonnegative matrices and Markov chains. 2nd ed., Springer Series in Statistics, New York: Springer-Verlag, 1981 · Zbl 0471.60001
[24] Solomyak B.: Dynamics of self-similar tilings. Erg. Th. Dyn. Syst. 17(3), 695–738 (1997) · Zbl 0884.58062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.