×

zbMATH — the first resource for mathematics

Classification of simple linearly compact \(n\)-Lie superalgebras. (English) Zbl 1232.17008
In a previous paper [Inst. Math. Res. Not. 2010, No. 17, 3341–3393 (2010; Zbl 1269.17002)], all linearly compact simple rigid superalgebras are classified. In the present paper, using the same method, the authors classify simple linearly compact \(n\)-Lie superalgebras with \(n>2\) over a field \({\mathbb F}\) of characteristic 0. Four examples, one of them being the \(n+1\)-dimensional vector product \(n\)-Lie algebra, and remaining three infinite-dimensional \(n\)-Lie algebras, are given.

MSC:
17A42 Other \(n\)-ary compositions \((n \ge 3)\)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Blattner R.J.: A theorem of Cartan and Guillemin. J. Diff. Geom. 5, 295–305 (1970) · Zbl 0235.17010
[2] Cantarini N., Kac V.: Infinite-dimensional primitive linearly compact Lie superalgebras. Adv. Math. 207, 328–419 (2006) · Zbl 1204.17017 · doi:10.1016/j.aim.2006.02.013
[3] Cantarini N., Kac V.: Automorphisms and forms of simple infinite-dimensional linearly compact Lie superalgebras. Int. J. Geom. Meth. Phys. 5, 6, 845–867 (2006) · Zbl 1115.17009 · doi:10.1142/S0219887806001624
[4] Cantarini N., Kac V.: Classification of linearly compact simple Jordan and generalized Poisson superalgebras. J. Algebra 313, 100–124 (2007) · Zbl 1173.17023 · doi:10.1016/j.jalgebra.2006.10.040
[5] Cantarini, N., Kac, V.: Classification of linearly compact simple rigid superalgebras. IMRN, doi: 10.1093/imrn/rnp231 ; preprint available at http://arxiv.org/abs/0909.3100v1[math.QA] , 2010
[6] Dzhumadildaev A.S.: Identities and derivations for Jacobian algebras. Contemp. Math. 315, 245–278 (2002) · Zbl 1082.17003
[7] Dzhumadildaev A.S.: Representations of vector product n-Lie algebras. Comm. Algebra 32(9), 3315– 3326 (2004) · Zbl 1121.17003 · doi:10.1081/AGB-120038644
[8] Dzhumadildaev, A.S.: n-Lie structures that are generated by Wronskians. Sib. Mat. Zh. 46(4), 759–773 (2005), translation in Sib. Math. J. 46(4), 601–612 (2005) · Zbl 1122.17002
[9] Dzhumadildaev, A.S.: n-Lie property of Jacobian as a complete integrability condition. Sib. Mat. Zh. 47(4), 780–790 (2006), translation in Sib. Math. J. 47(4), 643–652 (2006) · Zbl 1150.17021
[10] Fattori D., Kac V.G.: Classification of finite simple Lie conformal superalgebras. J. Algebra 258, 23–59 (2002) · Zbl 1050.17023 · doi:10.1016/S0021-8693(02)00504-5
[11] Filippov, V.T.: n-Lie algebras. Sib. Mat. Zh. 26(6), 126–140 (1985), translation in Sib. Math. J. 26(6), 879–891 (1985) · Zbl 0585.17002
[12] Filippov, V.T.: On n-Lie algebras of Jacobians. Sib. Mat. Zh. 39(3), 660–669 (1998), translation in Sib. Math. J. 39(3), 573–581 (1998) · Zbl 0936.17005
[13] Figueroa-O’Farrill, J.: Three lectures on 3-algebras. http://arxiv.org/abs/0812.2865v1[hep-th] , 2008
[14] Friedmann, T.: Orbifold singularities, the LATKe, and pure Yang-Mills with matter. http://arxiv.org/abs/0806.0024v1[math.AG] , 2008
[15] Guillemin V.W.: A Jordan-Hölder decomposition for a certain class of infinite-dimensional Lie algebras. J. Diff. Geom. 2, 313–345 (1968) · Zbl 0183.26102
[16] Kac V.G.: Lie superalgebras. Adv. Math. 26, 8–96 (1977) · Zbl 0366.17012 · doi:10.1016/0001-8708(77)90017-2
[17] Kac V.G.: Classification of infinite-dimensional simple linearly compact Lie superalgebras. Adv. Math. 139, 1–55 (1998) · Zbl 0929.17026 · doi:10.1006/aima.1998.1756
[18] Kasymov, S.M.: On the theory of n-Lie algebras. Algebra i Logika 26(3), 277–297 (1987), translation in Algebra and Logic 26(3), 155–166 (1987) · Zbl 0647.17001
[19] Kasymov S.M.: On nil-elements and nil-subsets of n-Lie algebras. Sib. Mat. J. 32(6), 77–80 (1991) · Zbl 0758.17002
[20] Ling, W.X.: On the structure of n-Lie algebras. PhD thesis, Siegen, 1993 · Zbl 0841.17002
[21] de Medeiros, P., Figueroa-OFarrill, J., Méndez-Escobar, E.: Superpotentials for superconformal ChernSimons theories from representation theory. arXiv 0908.2125
[22] Michor P.W., Vinogradov A.M.: n-ary Lie and associative algebras. Rend. Sem. Mat. Univ. Pol. Torino 54(4), 373–392 (1996) · Zbl 0928.17029
[23] Nambu Y.: Generalized Hamiltonian mechanics. Phys. Rev. D7, 2405–2412 (1973) · Zbl 1027.70503
[24] Schlessinger M., Stasheff J.D.: The Lie algebra structure of tangent cohomology and deformation theory. J. Pure Appl. Algebra 38, 313–322 (1985) · Zbl 0576.17008 · doi:10.1016/0022-4049(85)90019-2
[25] Takhtajan L.: On foundations of generalized Nambu mechanics. Commun. Math. Phys. 160, 295–315 (1994) · Zbl 0808.70015 · doi:10.1007/BF02103278
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.