zbMATH — the first resource for mathematics

Convergence of Calabi-Yau manifolds. (English) Zbl 1232.32012
A Calabi-Yau \(n\)-variety is a normal Gorenstein projective variety \(N\) of dimension \(n\) admitting only canonical singularities, such that the dualizing sheaf \(K_N\) of \(N\) is trivial (i.e. \(K_N \cong {\mathcal O}_N\)) and \(H^2(N, {\mathcal O}_N) = \{ 0 \}\). We recall that \((M, \pi)\) is a resolution of \(N\) if \(M\) is a compact complex \(n\)-manifold and \(\pi: M \rightarrow N\) is a bi-rational proper morphism such that \(\pi: M \setminus \pi^{-1}(S) \rightarrow N \setminus S\) is biholomorphic, where by \(S\) we denote the singular set of \(N\). The resolution is called crepant if \(\pi^* K_N = K_M\), or equivalently if \(M\) is a compact Calabi-Yau \(n\)-manifold. For a Calabi-Yau variety \(N\) there are the notions of Kähler metrics, (smooth) Kähler forms and holomorphic volume forms, which are anologous to the ones for a Calabi-Yau manifold. Any Kähler form \(\omega\) represents a class \([\omega] \in H^1(N, \mathcal{PH}_N)\), where \(\mathcal{PH}_N\) denotes the sheaf of pluri-harmonic functions on \(N\). In [P. Eyssidieux, V. Guedj and A. Zeriahi, J. Am. Math. Soc. 22, No. 3, 607–639 (2009; Zbl 1215.32017)] it was proved that, for any \(\alpha \in H^1(N, \mathcal{PH}_N)\) which can be represented by a smooth Kähler form, there exists a unique Ricci-flat Kähler metric \(g\) with Kähler form \(\omega \in \alpha\). If \(N\) has a crepant resolution \((M, \pi)\) and \(\alpha_k \in H^{1,1} (M, R)\) is a family of Kähler classes such that \(\lim_{k \to \infty} \alpha_k = \pi^* \alpha\), then, by a result in [V. Tosatti, J. Eur. Math. Soc. (JEMS) 11, No. 4, 755–776 (2009; Zbl 1177.32015)], \(g_k\) converges to \(\pi^* g\) in the \({\mathcal C}^{\infty}\)-sense on any compact subset of \(M \setminus \pi^{-1} (S)\) when \(k\) goes to \(\infty\), where \(g_k\) is the unique Ricci-flat Kähler metric with Kähler form \(\omega_k \in \alpha_k\).
In the present paper the authors study the convergence of \((M, g_k)\) in the Gromov-Haussdorff topology. As an application they show that if \(N\) is a compact Calabi-Yau \(n\)-orbifold, which admits a crepant resolution \((M, \pi)\), if \(g\) is a Ricci-flat Kähler metric on \(N\) with Kähler form \(\omega\), and if \(g_k\) is a family of Ricci-flat Kähler metrics on \(M\) with the Kähler forms \(\omega_k\) such that the Kähler classes \([\omega_k]\) converge to \(\pi^* [\omega]\) in \(H^{1,1} (M, R)\) as \(k\) goes to \(\infty\), then \(\lim_{k \to \infty} d_{GH} \big((M, g_k), (N, g)\big) =0\), where \( d_{GH} \big((M, g_k), (N, g)\big)\) denotes the Gromov-Hausdorff distance.
Moreover, the authors study the convergence of Calabi-Yau manifolds obtained from a smoothing of a Calabi-Yau variety and the collapsing of a family of Calabi-Yau manifolds.
Reviewer: Anna Fino (Torino)

32Q25 Calabi-Yau theory (complex-analytic aspects)
32U20 Capacity theory and generalizations
Full Text: DOI arXiv
[1] Anderson, M.T., Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. math., 102, 429-445, (1990) · Zbl 0711.53038
[2] Anderson, M.T., The \(L^2\) structure of moduli spaces of Einstein metrics on 4-manifolds, Geom. funct. anal., 231-251, (1991)
[3] Aspinwall, P.S.; Green, B.R.; Morrison, D.R., Calabi-Yau moduli space, mirror manifolds and spacetime topology change in string theory, Nuclear phys. B, 416, 414-480, (1994) · Zbl 0899.32006
[4] Baily, W.L., On the imbeddings of V-manifolds in projective space, Amer. J. math., 79, 2, 403-430, (1957) · Zbl 0173.22706
[5] Bando, S.; Kobayashi, R., Ricci-flat Kähler metrics on affine algebraic manifolds II, Math. ann., 287, 175-180, (1990) · Zbl 0701.53083
[6] Bedford, E.; Taylor, B.A., A new capacity for plurisubharmonic functions, Acta math., 194, 1-40, (1982) · Zbl 0547.32012
[7] Borzellino, J., Orbifolds of maximal diameter, Indiana univ. math. J., 42, 37-53, (1993) · Zbl 0801.53031
[8] Candelas, P.; de la Ossa, X.C., Comments on conifolds, Nuclear phys. B, 342, 1, 246-268, (1990)
[9] Candelas, P.; Green, P.S.; Hübsch, T., Rolling among Calabi-Yau vacua, Nuclear phys. B, 330, 49-102, (1990) · Zbl 0985.32502
[10] Cheeger, J., Degeneration of Einstein metrics and metrics with special holonomy, (), 29-73 · Zbl 1053.53028
[11] Cheeger, J.; Colding, T.H., On the structure of space with Ricci curvature bounded below I, J. differential geom., 46, 406-480, (1997) · Zbl 0902.53034
[12] Cheeger, J.; Colding, T.H., On the structure of space with Ricci curvature bounded below II, J. differential geom., 52, 13-35, (1999) · Zbl 1027.53042
[13] Cheeger, J.; Tian, G., Anti-self-duality of curvature and degeneration of metrics with special holonomy, Comm. math. phys., 255, 391-417, (2005) · Zbl 1081.53038
[14] Cheeger, J.; Colding, T.H.; Tian, G., On the singularities of spaces with bounded Ricci curvature, Geom. funct. anal., 12, 873-914, (2002) · Zbl 1030.53046
[15] Cheng, S.Y.; Li, P., Heat kernel estimates and lower bound of eigenvalues, Comment. math. helv., 56, 327-338, (1981) · Zbl 0484.53034
[16] Colding, T.H., Ricci curvature and volume convergence, Ann. of math., 145, 477-501, (1997) · Zbl 0879.53030
[17] Cox, D.A.; Katz, S., Mirror symmetry and algebraic geometry, Math. surveys monogr., vol. 68, (1999), American Mathematical Society · Zbl 0951.14026
[18] Davis, E.B., Heat kernels and spectral theory, (1989), Cambridge Univ. Press Cambridge · Zbl 0699.35006
[19] J.P. Demailly, Complex Analytic and Differential Geometry, online book.
[20] Eyssidieux, P.; Guedj, V.; Zeriahi, A., Singular Kähler-Einstein metrics, J. amer. math. soc., 22, 607-639, (2009) · Zbl 1215.32017
[21] Fornaess, J.E.; Narasimhan, R., The Levi problem on complex space with singularities, Math. ann., 248, 47-72, (1980) · Zbl 0411.32011
[22] Fukaya, K., Hausdorff convergence of Riemannian manifolds and its application, Adv. stud. pure math., 18, 143-234, (1990) · Zbl 0754.53004
[23] Gilbarg, D.; Trudinger, N.S., Elliptic partial differential equations of second order, (1983), Springer · Zbl 0691.35001
[24] Green, P.S.; Hübsch, T., Connecting moduli spaces of Calabi-Yau threefolds, Comm. math. phys., 119, 431-441, (1988) · Zbl 0684.53077
[25] Green, R.E.; Wu, H., Lipschitz converges of Riemannian manifolds, Pacific J. math., 131, 119-141, (1988) · Zbl 0646.53038
[26] Griffiths, H.; Harris, J., Principles of algebraic geometry, (1978), John Wiley and Sons New York · Zbl 0408.14001
[27] Gromov, M., Metric structures for riemannian and non-Riemannian spaces, (1999), Birkhäuser
[28] Gross, M.; Wilson, P.M.H., Mirror symmetry via 3-tori for a class of Calabi-Yau threefolds, Math. ann., 309, 505-531, (1997) · Zbl 0901.14024
[29] Gross, M.; Wilson, P.M.H., Large complex structure limits of K3 surfaces, J. differential geom., 55, 475-546, (2000) · Zbl 1027.32021
[30] Guedj, V.; Zeriahi, A., Intrinsic capacities on compact Kähler manifolds, J. geom. anal., 15, 607-639, (2005) · Zbl 1087.32020
[31] Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II, Ann. of math., 79, 109-326, (1964) · Zbl 0122.38603
[32] Kobayashi, R., Moduli of Einstein metrics on K3 surface and degeneration of type I, Adv. stud. pure math., 18, II, 257-311, (1990) · Zbl 0755.32023
[33] Kobayashi, R.; Todorov, A.N., Polarized period map for generalized K3 surfaces and the moduli of Einstein metrics, Tohoku math. J., 39, 341-363, (1987) · Zbl 0646.14029
[34] Kodaira, K., On compact complex analytic surfaces I, Ann. of math., 71, 111-152, (1960) · Zbl 0098.13004
[35] Kolodziej, S., The complex Monge-Ampère equation, Acta math., 180, 69-117, (1998) · Zbl 0913.35043
[36] Kontsevich, M.; Soibelman, Y., Homological mirror symmetry and torus fibrations, (), 203-263 · Zbl 1072.14046
[37] Li, P.; Tian, G., On the heat kernel of the bergmann metric on algebraic varieties, J. amer. math. soc., 8, 857-877, (1995) · Zbl 0864.58058
[38] Lu, P., Kähler-Einstein metrics on Kummer threefold and special Lagrangian tori, Comm. anal. geom., 7, 787-806, (1999) · Zbl 1023.32015
[39] Miyaoka, Y.; Peternell, T., Geometry of higher-dimensional algebraic varieties, DMV seminar, vol. 26, (1997), Birkhäuser Verlag · Zbl 0865.14018
[40] Petersen, P., Riemannian geometry, (1997), Springer
[41] Reid, M., The moduli space of 3-folds with \(K = 0\) may nevertheless be irreducible, Math. ann., 287, 329-334, (1987) · Zbl 0649.14021
[42] Roan, S.S., Minimal resolution of Gorenstein orbifolds, Topology, 35, 487-508, (1996)
[43] Rossi, M., Geometric transitions, J. geom. phys., 56, 9, 1940-1983, (2006) · Zbl 1106.32019
[44] Ruan, W.D., On the convergence and collapsing of Kähler metrics, J. differential geom., 52, 1-40, (1999) · Zbl 1039.53045
[45] Satake, I., The Gauss-Bonnet theorem for V-manifolds, J. math. soc. Japan, 9, 464-492, (1957) · Zbl 0080.37403
[46] Schoen, R.; Yau, S.T., Lectures on differential geometry, (1994), International Press · Zbl 0830.53001
[47] Song, J.; Tian, G., Canonical measures and Kähler-Ricci flow · Zbl 1239.53086
[48] Strominger, A.; Yau, S.T.; Zaslow, E., Mirror symmetry is T-duality, Mirror symmetry, vector bundles and Lagrangian submanifolds, Stud. adv. math., 23, 333-347, (2001) · Zbl 0998.81091
[49] Tian, G., Smoothing 3-folds with trivial canonical bundle and ordinary double points, (), 458-479 · Zbl 0829.32012
[50] Tosatti, V., Limits of Calabi-Yau metrics when the Kähler class degenerates, J. eur. math. soc. (JEMS), 11, 4, 755-776, (2009) · Zbl 1177.32015
[51] Yau, S.T., On the Ricci curvature of a compact Kähler manifold and complex Monge-Ampère equation I, Comm. pure appl. math., 31, 339-411, (1978) · Zbl 0369.53059
[52] Yau, S.T., A general Schwarz lemma for Kähler manifolds, Amer. J. math., 100, 197-204, (1978) · Zbl 0424.53040
[53] Yau, S.T., Survey on partial differential equations in differential geometry, (), 3-71
[54] Yau, S.T., Einstein manifolds with zero Ricci curvature, (), 1-14 · Zbl 1023.53027
[55] Yoshikawa, K., Degeneration of algebraic manifolds and the spectrum of Laplacian, Nagoya math. J., 146, 93-129, (1997) · Zbl 0880.58030
[56] Y.G. Zhang, The convergence of Kähler manifolds and calibrated fibrations, PhD thesis, Nankai Institute of Mathematics, 2006.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.