×

Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. (English) Zbl 1232.34010

Summary: We consider the existence of positive solutions for a class of nonlinear boundary-value problem of fractional differential equations with integral boundary conditions. Our analysis relies on known Guo-Krasnoselskii fixed point theorem.

MSC:

34A08 Fractional ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Podlubny, I., Fractional Differential Equations, Math. Sci. Eng. (1999), Academic Press: Academic Press New York · Zbl 0918.34010
[2] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives. Theory and Applications (1993), Gordon and Breach: Gordon and Breach Yverdon · Zbl 0818.26003
[3] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., vol. 204 (2006), Elsevier Science B.V.: Elsevier Science B.V. Amsterdam · Zbl 1092.45003
[4] Lazarević, M. P.; Spasić, A. M., Finite-time stability analysis of fractional order time-delay systems: Gronwallʼs approach, Math. Comput. Modelling, 49, 475-481 (2009) · Zbl 1165.34408
[5] Lakshmikantham, V.; Vatsala, A. S., Basic theory of fractional differential equations, Nonlinear Anal., 69, 2677-2682 (2008) · Zbl 1161.34001
[6] Zhou, Y.; Jiao, F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal. Real World Appl., 11, 4465-4475 (2010) · Zbl 1260.34017
[7] Stojanovic, M.; Gorenflo, R., Nonlinear two-term time fractional diffusion-wave problem, Nonlinear Anal. Real World Appl., 11, 3512-3523 (2010) · Zbl 1203.35289
[8] Benchohra, M.; Cabada, A.; Seba, D., An existence result for nonlinear fractional differential equations on Banach spaces, Bound. Value Probl., 2009 (2009), Art. ID 628916, 11 pp · Zbl 1181.34007
[9] Bai, Z. B.; Lü, H. S., Positive solutions of boundary value problems of nonlinear fractional differential equation, J. Math. Anal. Appl., 311, 495-505 (2005) · Zbl 1079.34048
[10] Zhang, S. Q., Positive solutions for boundary value problems of nonlinear fractional differential equations, Electron. J. Differential Equations, 2006, 1-12 (2006) · Zbl 1096.34016
[11] Darwish, M. A.; Ntouyas, S. K., On initial and boundary value problems for fractional order mixed type functional differential inclusions, Comput. Math. Appl., 59, 1253-1265 (2010) · Zbl 1189.34029
[12] Agarwal, R. P.; Benchohra, M.; Hamani, S., Boundary value problems for differential inclusions with fractional order, Adv. Stud. Contemp. Math., 16, 2, 181-196 (2008) · Zbl 1152.26005
[13] Bai, C., Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl., 384, 211-231 (2011) · Zbl 1234.34005
[14] Girejko, E.; Mozyrska, D.; Wyrwas, M., A sufficient condition of viability for fractional differential equations with the Caputo derivative, J. Math. Anal. Appl., 381, 146-154 (2011) · Zbl 1222.34007
[15] Ahmad, B.; Agarwal, R. P., On nonlocal fractional boundary value problems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 18, 535-544 (2011) · Zbl 1230.26003
[16] Ahmad, B.; Nieto, J. J.; Alsaedi, A.; El-Shahed, M., A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal. Real World Appl., 13, 599-606 (2012) · Zbl 1238.34008
[17] Agarwal, R. P.; Ahmad, B., Existence of solutions for impulsive anti-periodic boundary value problems of fractional semilinear evolution equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 18, 457-470 (2011) · Zbl 1226.26005
[18] Wang, G.; Ahmad, B.; Zhang, L., Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order, Nonlinear Anal., 74, 792-804 (2011) · Zbl 1214.34009
[19] Ntouyas, S. K.; Wang, G.; Zhang, L., Positive solutions of arbitrary order nonlinear fractional differential equations with advanced arguments, Opuscula Math., 31, 433-442 (2011) · Zbl 1235.34209
[20] Wang, G., Boundary value problems for systems of nonlinear integro-differential equations with deviating arguments, J. Comput. Appl. Math., 234, 1356-1363 (2010) · Zbl 1195.45033
[21] Wang, G.; Song, G.; Zhang, L., Integral boundary value problems for first order integro-differential equations with deviating arguments, J. Comput. Appl. Math., 225, 602-611 (2009) · Zbl 1169.45002
[22] Jiang, J. Q.; Liu, L. S.; Wu, Y. H., Second-order nonlinear singular Sturm-Liouville problems with integral boundary conditions, Appl. Math. Comput., 215, 1573-1582 (2009) · Zbl 1181.34035
[23] Zhang, X. M.; Feng, M. Q.; Ge, W. G., Existence result of second-order differential equations with integral boundary conditions at resonance, J. Math. Anal. Appl., 353, 311-319 (2009) · Zbl 1180.34016
[24] Jankowski, T., Positive solutions for fourth-order differential equations with deviating arguments and integral boundary conditions, Nonlinear Anal., 73, 1289-1299 (2010) · Zbl 1200.34072
[25] Benchohra, M.; Nieto, J. J.; Ouahab, A., Second-order boundary value problem with integral boundary conditions, Bound. Value Probl., 2011 (2011), Art. ID 260309 · Zbl 1208.34015
[26] Feng, M.; Zhang, X.; Ge, W., New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions, Bound. Value Probl., 2011 (2011), Art. ID 720702 · Zbl 1214.34005
[27] Salem, H. A.H., Fractional order boundary value problem with integral boundary conditions involving Pettis integral, Acta Math. Sci. Ser. B Engl. Ed., 31, 2, 661-672 (2011) · Zbl 1240.26009
[28] Ahmad, B.; Sivasundaram, S., Existence of solutions for impulsive integral boundary value problems of fractional order, Nonlinear Anal. Hybrid Syst., 4, 134-141 (2010) · Zbl 1187.34038
[29] Ahmad, B.; Alsaedi, A.; Alghamdi, B., Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions, Nonlinear Anal. Real World Appl., 9, 1727-1740 (2008) · Zbl 1154.34311
[30] Guo, D.; Lakshmikantham, V., Nonlinear Problems in Abstract Cones (1988), Academic Press: Academic Press New York · Zbl 0661.47045
[31] Graef, J. R.; Kong, L.; Wang, H., Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem, J. Differential Equations, 245, 1185-1197 (2008) · Zbl 1203.34028
[32] Wang, H., On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl., 281, 1, 287-306 (2003) · Zbl 1036.34032
[33] Anastassiou, G. A., Fractional Differentiation Inequalities (2009), Springer: Springer Dordrecht · Zbl 1181.26001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.