zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On constants in nonoscillation criteria for half-linear differential equations. (English) Zbl 1232.34052
Summary: We study the half-linear differential equation $$(r(t)\Phi(x'))' + c(t)\Phi(x) = 0 \text{, where }\Phi(x) = |x|^{p-2}, p > 1.$$ Using the modified Riccati technique, we derive new nonoscillation criteria for this equation. The results are closely related to the classical Hille-Nehari criteria and allow to replace the fixed constants in known nonoscillation criteria by a certain one-parametric expression.

34C10Qualitative theory of oscillations of ODE: zeros, disconjugacy and comparison theory
Full Text: DOI
[1] O. Do\vslý and P. \vRehák, Half-Linear Differential Equations, vol. 202 of North-Holland Mathematics Studies, Elsevier Science, Amsterdam, The Netherlands, 2005.
[2] O. Do\vslý and J. \vRezní\vcková, “Oscillation and nonoscillation of perturbed half-linear Euler differential equations,” Publicationes Mathematicae Debrecen, vol. 71, no. 3-4, pp. 479-488, 2007. · Zbl 1164.34012
[3] O. Do\vslý, “Perturbations of the half-linear Euler-Weber type differential equation,” Journal of Mathematical Analysis and Applications, vol. 323, no. 1, pp. 426-440, 2006. · Zbl 1107.34030 · doi:10.1016/j.jmaa.2005.10.051
[4] S. Fi\vsnarová and R. Ma\vrík, “Half-linear ODE and modified Riccati equation: comparison theorems, integral characterization of principal solution,” Nonlinear Analysis: Theory, Methods and Applications, vol. 74, no. 17, pp. 6427-6433, 2011. · Zbl 1229.34048 · doi:10.1016/j.na.2011.06.025
[5] Á. Elbert and A. Schneider, “Perturbations of the half-linear Euler differential equation,” Results in Mathematics, vol. 37, no. 1-2, pp. 56-83, 2000. · Zbl 0958.34029 · doi:10.1007/BF03322512
[6] O. Do\vslý and M. Ünal, “Conditionally oscillatory half-linear differential equations,” Acta Mathematica Hungarica, vol. 120, no. 1-2, pp. 147-163, 2008. · Zbl 1199.34169 · doi:10.1007/s10474-007-7120-4
[7] N. Kandelaki, A. Lomtatidze, and D. Ugulava, “On oscillation and nonoscillation of a second order half-linear equation,” Georgian Mathematical Journal, vol. 7, no. 2, pp. 329-346, 2000. · Zbl 0957.34032 · eudml:48668
[8] O. Do\vslý, “A remark on the linearization technique in half-linear oscillation theory,” Opuscula Mathematica, vol. 26, no. 2, pp. 305-315, 2006. · Zbl 1135.34314
[9] O. Do\vslý and S. Fi\vsnarová, “Half-linear oscillation criteria: perturbation in term involving derivative,” Nonlinear Analysis: Theory, Methods & Applications, vol. 73, no. 12, pp. 3756-3766, 2010. · Zbl 1207.34041 · doi:10.1016/j.na.2010.07.049
[10] O. Do\vslý and M. Ünal, “Half-linear differential equations: linearization technique and its application,” Journal of Mathematical Analysis and Applications, vol. 335, no. 1, pp. 450-460, 2007. · Zbl 1128.34017 · doi:10.1016/j.jmaa.2007.01.080