zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence and global attractivity of positive periodic solutions for a predator-prey model with modified Leslie-Gower Holling-type II schemes. (English) Zbl 1232.34077
The authors investigate a periodic predator-prey model whose functional responses are of Holling-type II. Their aim is to find easily verifiable sufficient conditions for the existence and global attractivity of a periodic solution in the positive quadrant. To prove their results, they derive a-priori estimates for such solutions, make use of the coincidence degree for Fredholm operators of index zero, and, moreover, find an appropriate Lyapunov function. A simple numerical example concludes the paper.

34C60Qualitative investigation and simulation of models (ODE)
92D25Population dynamics (general)
34C25Periodic solutions of ODE
34D23Global stability of ODE
47N20Applications of operator theory to differential and integral equations
Full Text: DOI
[1] Leslie, P. H.: Some further notes on the use of matrices in population mathematics, Biometrica 35, 213-245 (1948) · Zbl 0034.23303
[2] Leslie, P. H.; Gower, J. C.: The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrica 47, 219-234 (1960) · Zbl 0103.12502
[3] Pielou, E. C.: An introduction to mathematical ecology, (1969) · Zbl 0259.92001
[4] Aziz-Alaoui, M. A.: Study of a Leslie-gower-type tritrophic population, Chaos solitons fractals 14, 1275-1293 (2002) · Zbl 1031.92027 · doi:10.1016/S0960-0779(02)00079-6
[5] Teng, Z. D.: On the persistence and positive periodic solution for planar competing Lotka-Volterra systems, Ann. differential equations 13, No. 3, 275-286 (1997) · Zbl 0887.34038
[6] Teng, Z. D.; Chen, L. S.: Necessary and sufficient conditions for existence of positive periodic solutions of periodic predator-prey systems, Acta math. Sci. 18, No. 4, 402-406 (1998) · Zbl 0914.92019
[7] Chen, C.; Chen, F. D.: Conditions for global attractivity of multispecise ecological competition-predator system with Holling III type functional response, J. biomath. 19, No. 2, 136-140 (2004)
[8] Chen, F. D.: The permanence and global attractivity of Lotka-Volterra competition system with feedback controls, Nonlinear anal. Real world appl. 7, 133-143 (2006) · Zbl 1103.34038 · doi:10.1016/j.nonrwa.2005.01.006
[9] Wang, K.: Existence and global asymptotic stability of positive periodic solution for a predator-prey system with mutual interference, Nonlinear anal. Real world appl. 10, No. 5, 2774-2783 (2009) · Zbl 1175.34056 · doi:10.1016/j.nonrwa.2008.08.015
[10] Wang, K.; Zhu, Y. L.: Global attractivity of positive periodic solution for a Volterra model, Appl. math. Comput. 203, No. 2, 493-501 (2008) · Zbl 1178.34052 · doi:10.1016/j.amc.2008.04.005
[11] Song, X. Y.; Li, Y. F.: Dynamic behaviors of the periodic predator-prey model with modified Leslie-gower Holling-type II schemes and impulsive effect, Nonlinear anal. Real world appl. 9, 64-79 (2008) · Zbl 1142.34031 · doi:10.1016/j.nonrwa.2006.09.004
[12] Gaines, R. E.; Mawhin, J. L.: Coincidence degree and nonlinear differential equations, (1977) · Zbl 0339.47031
[13] Gopalasamy, K.: Stability and oscillation in delay equation of population dynamics, (1992) · Zbl 0752.34039