×

zbMATH — the first resource for mathematics

On Levi-flat hypersurfaces tangent to holomorphic webs. (English. French summary) Zbl 1232.53022
Author’s abstract: We investigate real analytic Levi-flat hypersurfaces tangent to holomorphic webs. We introduce the notion of first integrals for local webs. In particular, we prove that a \(k\)-web with finitely many invariant subvarieties through the origin tangent to a Levi-flat hypersurface has a holomorphic first integral.

MSC:
53A60 Differential geometry of webs
PDF BibTeX XML Cite
Full Text: DOI EuDML arXiv
References:
[1] Burns (D.), Gong (X.).— Singular Levi-flat real analytic hypersurfaces, Amer. J. Math. 121, p.\( 23-53 (1999)\). · Zbl 0931.32009
[2] Brunella (M.).— Singular Levi-flat hypersurfaces and codimension one foliations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6, no. 4, p. 661-672 (2007). · Zbl 1214.32012
[3] Cavalier (V.), Lehmann (D.).— Introduction à l’étude globale des tissus sur une surface holomorphe. Ann. Inst. Fourier (Grenoble) 57, no. 4, p. 1095-1133 (2007). · Zbl 1129.14015
[4] Cavalier (V), Lehmann (D.).— Global structure of holomorphic webs on surfaces. Geometry and topology of caustics-CAUSTICS ’06, 35-44, Banach Center Publ., 82, Polish Acad. Sci. Inst. Math., Warsaw (2008). · Zbl 1149.14300
[5] Cerveau (D.), Lins Neto (A.).— Local Levi-flat hypersurfaces invariants by a codimension one holomorphic foliation, To appear in Amer. J. Math.
[6] Fernández-Pérez (A.).— On normal forms of singular Levi-flat real analytic hypersurfaces. Bull. Braz. Math. Soc. (N.S.) 42, no. 1, p. 75-85 (2011). · Zbl 1215.32016
[7] Fernández-Pérez (A.).— Singular Levi-flat hypersurfaces. An approach through holomorphic foliations. Ph.D Thesis IMPA, Brazil (2010).
[8] Gunning (R.).— Introduction to holomorphic functions of several variables. Vol. II. Local theory. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA (1990).
[9] Lebl (J.).— Singularities and complexity in CR geometry. Ph.D. Thesis, University of California at San Diego, Spring (2007).
[10] Loray (F.).— Pseudo-groupe d’une singularité de feuilletage holomorphe en dimension deux. ; http://hal.archives-ouvertures.fr/ccsd-00016434
[11] Mattei (J.F.), Moussu (R.).— Holonomie et intégrales premières, Ann. Ec. Norm. Sup. 13, p.\( 469-523 (1980)\). · Zbl 0458.32005
[12] Pereira (J.V.), Pirio (L.).— An invitation to web geometry. From Abel’s addition theorem to the algebraization of codimension one webs. Publicações Matemáticas do IMPA. Rio de Janeiro (2009). · Zbl 1184.53002
[13] Seidenberg (A.).— Reduction of singularities of the differential equation \(A\,dy=B\,dx\). Amer. J. Math. 90, p.\( 248-269 (1968)\). · Zbl 0159.33303
[14] Yartey (J.N.A).— Number of singularities of a generic web on the complex projective plane. J. Dyn. Control Syst. 11, no. 2, p. 281-296 (2005). · Zbl 1066.37032
[15] Siu (Y.T.).— Techniques of extension of analytic objects. Lecture Notes in Pure and Applied Mathematics, Vol. 8. Marcel Dekker, Inc., New York (1974). · Zbl 0294.32007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.