×

Mean curvature flow of space-like Lagrangian submanifolds in almost para-Kähler manifolds. (English) Zbl 1232.53066

The authors seek families \(F:M\times[0,T)\to N\) of space-like Lagrangian immersions from a manifold \(M\) into an almost para-Kähler manifold that vary according to the (generalized) mean curvature flow \(F_t(p,t)=\vec H(p,t)\), where \(\vec H\) is a generalized mean curvature vector field on a submanifold of half the ambient dimension, that differs from the usual definition by (lower order) terms that are determined by the para-complex structure.
As their main results, the authors show the existence of a maximal (possibly infinite) time so that the investigated flow admits solutions in the class of semi-dimensional space-like submanifolds in an almost para-Kähler manifold with a metric para-complex connection (Theorem 1), and that the flow preserves the Lagrangian condition if the ambient geometry is endowed with a \(\ast\)-Einstein para-complex connection (Theorem 2).
The paper contains a detailed discussion of the geometric realm of almost para-Kähler manifolds and their (semi-dimensional) submanifolds.

MSC:

53D12 Lagrangian submanifolds; Maslov index
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Alekseevsky D.V., Medori C., Tomassini A.: Homogeneous para-Kähler Einstein manifolds. Russ. Math. Surv. 64, 1–43 (2009) · Zbl 1179.53050
[2] Behrndt, T.: Lagrangian mean curvature flow in almost Kähler-Einstein manifolds. In: Proceedings of the Conference ”Complex and Differential Geometry”, Hannover 2009. arXiv:0812.4256v2 (2009, accepted) · Zbl 1243.53106
[3] Cruceanu V., Fortuny P., Gadea P.M.: A survey on paracomplex geometry. Rocky Mt. J. Math. 26, 83–115 (1996) · Zbl 0856.53049
[4] Datta B., Subramanian S.: Nonexistence of almost complex structures on products of even-dimensional spheres. Topol. Appl. 36(1), 39–42 (1990). doi: 10.1016/0166-8641(90)90034-Y · Zbl 0711.53030
[5] Ecker K.: Interior estimates and longtime solutions for mean curvature flow of noncompact spacelike hypersurfaces in Minkowski space. J. Differ. Geom. 45, 481–498 (1997) · Zbl 0909.53045
[6] Ecker K., Huisken G.: Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes. Commun. Math. Phys. 135, 595–613 (1991) · Zbl 0721.53055
[7] Etayo F., Santamaría R., Trías U.R.: The geometry of a bi-Lagrangian manifold. Differ. Geom. Appl. 24(1), 33–59 (2006). doi: 10.1016/j.difgeo.2005.07.002 · Zbl 1101.53047
[8] Gadea P.M., Montesinos Amilibia A.: Spaces of constant para-holomorphic sectional curvature. Pac. J. Math. 136(1), 85–101 (1989) · Zbl 0706.53024
[9] Huang, R.L.: Lagrangian mean curvature flow in Pseudo-Euclidean space. arXiv:0908.3070 (2009)
[10] Ivanov S., Zamkovoy S.: Parahermitian and paraquaternionic manifolds. Differ. Geom. Appl. 23(2), 205–234 (2005). doi: 10.1016/j.difgeo.2005.06.002 · Zbl 1115.53022
[11] Kaneyuki S.: On classification of para-Hermitian symmetric spaces. Tokyo J. Math. 8(2), 473–482 (1985) · Zbl 0592.53042
[12] Kaneyuki S., Kozai M.: Paracomplex structures and affine symmetric spaces. Tokyo J. Math. 8(1), 81–98 (1985) · Zbl 0585.53029
[13] Li, G., Salavessa, I.M.C.: Mean curvature flow of spacelike graphs. arXiv:0804.0783 v4 (2008) · Zbl 1149.53039
[14] Smoczyk, K.: A canonical way to deform a Lagrangian submanifold. arXiv:dg-ga/9605005 (1996)
[15] Smoczyk, K., Wang, M.-T.: Generalized Lagrangian mean curvature flows in symplectic manifolds. arXiv:0910.2667v1 (2009) · Zbl 1232.53055
[16] Vaisman, I.: Symplectic Geometry and Secondary Characteristic Classes. Progress in Mathematics, vol. 72. Birkhäuser Boston Inc., Boston (1987) · Zbl 0629.53002
[17] Xin, Y.: Minimal Submanifolds and Related Topics. Nankai Tracts in Mathematics, vol. 8. World Scientific Publishing Co. Inc., River Edge (2003) · Zbl 1055.53047
[18] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles: Differential Geometry. Pure and Applied Mathematics, No. 16. Marcel Dekker Inc., New York (1973) · Zbl 0262.53024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.