Meshless Galerkin algorithms for boundary integral equations with moving least square approximations. (English) Zbl 1232.65160

Firstly, the author provides some error estimates which refer to moving least square approximation in two dimension for nodes and weights satisfying some restrictions. Then, he combines this approximation with a weak formulation of an integral equation of the first kind in order to obtain a Galerkin boundary node method. Some asymptotic error estimates corresponding to this method are reported and a Dirichlet boundary value problem for the Laplace equation is solved.


65N38 Boundary element methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
Full Text: DOI


[1] Armentano, G., Error estimates in Sobolev spaces for moving least square approximations, SIAM J. Numer. Anal., 39, 38-51 (2002) · Zbl 1001.65014
[2] Armentano, G.; Durán, R., Error estimates for moving least square approximations, Appl. Numer. Math., 37, 397-416 (2001) · Zbl 0984.65096
[3] Atluri, S. N.; Shen, S. P., The meshless local Petrov-Galerkin (MLPG) method: A simple & less-costly alternative to the finite element and boundary element methods, CMES: Comput. Modeling Eng. Sci., 3, 11-51 (2002) · Zbl 0996.65116
[4] Atluri, S. N.; Sladek, J.; Sladek, V.; Zhu, T., The local boundary integral equation (LBIE) and itʼs meshless implementation for linear elasticity, Comput. Mech., 25, 180-198 (2000) · Zbl 1020.74048
[5] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: An overview and recent developments, Comput. Methods Appl. Mech. Engrg., 139, 3-47 (1996) · Zbl 0891.73075
[6] Cheng, R.; Cheng, Y., Error estimates for the finite point method, Appl. Numer. Math., 58, 884-898 (2008) · Zbl 1145.65086
[7] Dautray, R.; Lious, J. L.; Artola, M.; Benilan, P., Mathematical Analysis and Numerical Methods for Science and Technology, vol. 4: Integral Equations and Numerical Methods (2000), Springer: Springer Berlin
[8] Dehghan, M.; Mirzaei, D., Meshless Local Petrov-Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity, Appl. Numer. Math., 59, 1043-1058 (2009) · Zbl 1159.76034
[9] Duarte, C. A.; Oden, J. T., H-p clouds — An h-p meshless method, Numer. Methods Part. Differ. Equat., 12, 675-705 (1996) · Zbl 0869.65069
[10] Duarte, C. A.; Oden, J. T., An hp adaptive method using clouds, Comput. Methods Appl. Mech. Engrg., 139, 237-262 (1996) · Zbl 0918.73328
[11] Golub, G. H.; Van Loan, C. F., Matrix Computations (1996), Johns Hopkins University Press: Johns Hopkins University Press Baltimore · Zbl 0865.65009
[12] Han, W.; Meng, X., Error analysis of the reproducing kernel particle method, Comput. Methods Appl. Mech. Engrg., 190, 6157-6181 (2001) · Zbl 0992.65119
[13] Hsiao, G. C.; Wendland, W. L., Boundary Integral Equations (2008), Springer: Springer Berlin · Zbl 0478.45004
[14] Lancaster, P.; Salkauskas, K., Surface generated by moving least squares methods, Math. Comput., 37, 141-158 (1981) · Zbl 0469.41005
[15] Levin, D., The approximation power of moving least-squares, Math. Comput., 67, 1335-1754 (1998)
[16] Li, X.; Zhu, J., A Galerkin boundary node method and its convergence analysis, J. Comput. Appl. Math., 30, 314-328 (2009) · Zbl 1189.65291
[17] Li, X.; Zhu, J., A meshless Galerkin method for Stokes problems using boundary integral equations, Comput. Methods Appl. Mech. Engrg., 198, 2874-2885 (2009) · Zbl 1229.76076
[18] Li, X.; Zhu, J., A Galerkin boundary node method for two-dimensional linear elasticity, CMES: Comput. Modeling Eng. Sci., 45, 1-29 (2009) · Zbl 1357.74008
[19] Liu, W. K.; Li, S.; Belytschko, T., Moving least-square reproducing kernel methods (I) methodology and convergence, Comput. Methods Appl. Mech. Engrg., 143, 113-154 (1997) · Zbl 0883.65088
[20] Liu, G. R.; Tu, Z. H., An adaptive procedure based on background cells for meshless methods, Comput. Methods Appl. Mech. Engrg., 191, 1923-1943 (2002) · Zbl 1098.74738
[21] Mirzaei, D.; Dehghan, M., A meshless based method for solution of integral equations, Appl. Numer. Math., 60, 245-262 (2010) · Zbl 1202.65174
[22] Mukherjee, S.; Mukherjee, Y. X., Boundary Methods: Elements, Contours, and Nodes (2005), CRC: CRC Boca Raton · Zbl 1110.65002
[23] Sauter, S. A.; Schwab, C., Quadrature for hp-Galerkin BEM in \(R^3\), Numer. Math., 78, 211-258 (1997) · Zbl 0901.65069
[24] Zhang, L.; Ouyang, J.; Zhang, X., On a two-level element-free Galerkin method for incompressible fluid flow, Appl. Numer. Math., 59, 1894-1904 (2009) · Zbl 1419.76514
[25] Zhang, J.; Tanaka, M.; Matsumoto, T., Meshless analysis of potential problems in three dimensions with the hybrid boundary node method, Int. J. Numer. Methods Engrg., 59, 1147-1166 (2004) · Zbl 1048.65121
[26] Zhu, J.; Yuan, Z., Boundary Element Analysis (2009), Science Press: Science Press Beijing
[27] Zuppa, C., Error estimates for moving least-square approximations, Bull. Braz. Math. Soc. New Series, 34, 231-249 (2003) · Zbl 1056.41007
[28] Zuppa, C., Good quality point sets and error estimates for moving least square approximations, Appl. Numer. Math., 47, 575-585 (2003) · Zbl 1040.65034
[29] Zuppa, C., Jachson-type inequalities for h-p clouds and error estimates, Comput. Methods Appl. Mech. Engrg., 194, 1875-1887 (2005) · Zbl 1097.65110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.