zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An epidemiology model suggested by yellow fever. (English) Zbl 1232.92056
Summary: We construct and analyze a nonlinear reaction-diffusion epidemiology model consisting of two integral-differential equations and an ordinary differential equation, which is suggested by various insect borne diseases, for example yellow fever. We begin by defining a nonlinear auxiliary problem and establishing the existence and uniqueness of its solution via a priori estimates and a fixed point argument, from which we prove the existence and uniqueness of the classical solution to the analytic problem. Next, we develop a finite-difference method to approximate our model and perform some numerical experiments. We conclude with a brief discussion of some subsequent extensions.

92C60Medical epidemiology
45K05Integro-partial differential equations
35K57Reaction-diffusion equations
65M06Finite difference methods (IVP of PDE)
65R20Integral equations (numerical methods)
65D30Numerical integration
37N25Dynamical systems in biology
Full Text: DOI