zbMATH — the first resource for mathematics

Modular representations of \(\text{GL}_2(\mathbb Q_p)\) and 2-dimensional Galois representations. (Représentations modulaires de \(\text{GL}_2(\mathbb Q_p)\) et représentations galoisiennes de dimension 2.) (English. French summary) Zbl 1233.11060
Berger, Laurent (ed.) et al., Représentations \(p\)-adiques de groupes \(p\)-adiques II: Représentations de \(\text{GL}_2 (\mathbb Q_p)\) et \((\varphi, \gamma)\)-modules. Paris: Société Mathématique de France (ISBN 978-2-85629-281-5/pbk). Astérisque 330, 263-279 (2010).
C. Breuil [J. Inst. Math. Jussieu 2, No. 1, 23–58 (2003; Zbl 1165.11319); Ann. Sci. Éc. Norm. Supér. (4) 37, No. 4, 559–610 (2004; Zbl 1166.11331)] has associated to a \(p\)-adic 2-dimensional representation \(V\) of \(\text{Gal}(\overline{\mathbb Q}_p/\mathbb Q_p)\), crystalline or semi-stable, a certain representation \(\Pi(V)\) of \(\text{GL}_2(\mathbb Q_p)\). It is known (Colmez, Breuil) that \(\Pi(V)\) is non-trivial, irreducible and admissible. Such a correspondence has been extended to all 2-dimensional representations by P. Colmez [Representations of \(\text{GL}_2(\mathbb Q_p)\) and \((\varphi,\Gamma)\)-modules. Astérisque 330, 281–509 (2010; Zbl 1218.11107)]; it encodes the classical local Langlands correspondence for \(\text{GL}_2(\mathbb Q_p)\). C. Breuil [Compos. Math. 138, No. 2, 165–188 (2003; Zbl 1044.11041); J. Inst. Math. Jussieu 2, No. 1, 23–58 (2003; Zbl 1165.11319)] has also defined a variant of the above correspondence in characteristic \(p\), and conjectures that it is compatible with the characteristic zero case.
The author proves Breuil’s conjecture for trianguline representations. The main ingredient of the proof is the study of some smooth irreducible representations of the Borel subgroup \(B(\mathbb Q_p)\) of \(\text{GL}_2(\mathbb Q_p)\) through models built using the theory of \((\varphi,\Gamma)\)-modules.
For the entire collection see [Zbl 1192.11001].

11F80 Galois representations
11F33 Congruences for modular and \(p\)-adic modular forms
11F85 \(p\)-adic theory, local fields
22E50 Representations of Lie and linear algebraic groups over local fields
Full Text: Link