# zbMATH — the first resource for mathematics

Small generators of function fields. (English. French summary) Zbl 1233.11120
It is well known that a finite extension of global fields can be generated by one element. In the paper under review the upper bound on the size of the minimal generator is established in the function field case. More precisely, let $$k\subset K$$ be two finite separable extension of $$\mathbb F_q(t).$$ Then it is proven that there exists an element $$\alpha$$ and a constant $$C=C(k, [K:k])$$ depending only on $$k$$ and $$[K:k]$$ such that $$K=k(\alpha)$$ and $$h(1,\alpha)<\frac{g_K}{d(K/k)}+C,$$ where $$d(K/k)=[K:k]/[K_0:k_0],$$ $$K_0$$ and $$k_0$$ being the corresponding fields of constants and $$h(1, \alpha)$$ is the logarithmic projective Weil height on $$\mathbb P^1.$$ The main ingredient of the proof is an application of Weil bounds for the number of places of given degree on curves over finite fields.

##### MSC:
 11R58 Arithmetic theory of algebraic function fields 11G50 Heights
##### Keywords:
function field; small generator; Weil bounds
Full Text:
##### References:
  Artin, E., Algebraic numbers and algebraic functions, (1967), Gordon and Breach, New York · Zbl 0194.35301  Bombieri, E.; Gubler, W., Heights in Diophantine Geometry, (2006), Cambridge University Press · Zbl 1115.11034  Duke, W., Hyperbolic distribution problems and half-integral weight masss forms, Invent. Math., 92, 73-90, (1988) · Zbl 0628.10029  Ellenberg, J.; Venkatesh, A., Reflection principles and bounds for class group torsion, Int. Math. Res. Not., no.1, Art. ID rnm002, (2007) · Zbl 1130.11060  Mahler, K., An inequality for the discriminant of a polynomial, Michigan Math. J., 11, 257-262, (1964) · Zbl 0135.01702  Roy, D.; Thunder, J. L., A note on siegel’s lemma over number fields, Monatsh. Math., 120, 307-318, (1995) · Zbl 0839.11011  Ruppert, W., Small generators of number fields, Manuscripta math., 96, 17-22, (1998) · Zbl 0899.11063  Silverman, J., Lower bounds for height functions, Duke Math. J., 51, 395-403, (1984) · Zbl 0579.14035  Stichtenoth, H., Algebraic function fields and codes, (1993), Springer · Zbl 0816.14011  Thunder, J. L., Siegel’s lemma for function fields, Michigan Math. J., 42, 147-162, (1995) · Zbl 0830.11024  Vaaler, J. D.; Widmer, M., On small generators of number fields, in preparation, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.