Hohlweg, Christophe; Lange, Carsten E. M. C.; Thomas, Hugh Permutahedra and generalized associahedra. (English) Zbl 1233.20035 Adv. Math. 226, No. 1, 608-640 (2011). Suppose that \((W,S)\) is a finite Coxeter system and \(c\in W\) is a Coxeter element (a product of the simple reflections in some order). N. Reading [Adv. Math. 205, No. 2, 313-353 (2006; Zbl 1106.20033)] has associated to this data the corresponding \(c\)-Cambrian fan \(\mathcal F_c\) and conjectured that every such fan is the normal fan of a polytope. The main result of this article is a proof of this conjecture, via the construction of a \(c\)-generalized associahedron. Note that Cambrian fans are known to be linearly isomorphic to \(\mathbf g\)-vector fans of finite type cluster algebras with respect to an acyclic initial seed. This was proved by N. Reading and D. E. Speyer [in J. Eur. Math. Soc. 11, No. 2, 407-447 (2009; Zbl 1213.20038)] modulo a conjecture of S. Fomin and A. Zelevinsky [Compos. Math. 143, No. 1, 112-164 (2007; Zbl 1127.16023)] which was later proved by S.-W. Yang and A. Zelevinsky [Transform. Groups 13, No. 3-4, 855-895 (2008; Zbl 1177.16010)]. Reviewer: Robert Marsh (Leeds) Cited in 1 ReviewCited in 42 Documents MSC: 20F55 Reflection and Coxeter groups (group-theoretic aspects) 52B11 \(n\)-dimensional polytopes 05E15 Combinatorial aspects of groups and algebras (MSC2010) 06A07 Combinatorics of partially ordered sets Keywords:Coxeter groups; Cambrian fans; Cambrian lattices; generalized associahedra; cluster fans; Weyl groups; cluster algebras; Bruhat order; Coxeter singleton Software:CHEVIE; GAP PDF BibTeX XML Cite \textit{C. Hohlweg} et al., Adv. Math. 226, No. 1, 608--640 (2011; Zbl 1233.20035) Full Text: DOI arXiv References: [1] Bergeron, N.; Hohlweg, C.; Lange, C.; Thomas, H., Isometry classes of generalized associahedra, Sém. lothar. combin., B61Aa, (2009), 13 pp · Zbl 1227.05273 [2] Björner, A.; Brenti, F., Combinatorics of Coxeter groups, (2005), Springer-Verlag New York · Zbl 1110.05001 [3] Bott, R.; Taubes, C., On the self-linking of knots, J. math. phys., 35, 5247-5287, (1994) · Zbl 0863.57004 [4] Chapoton, F.; Fomin, S.; Zelevinsky, A., Polytopal realizations of generalized associahedra, Canad. math. bull., 45, 537-566, (2003) · Zbl 1018.52007 [5] Geck, M.; Hiss, G.; Lübeck, F.; Malle, G.; Pfeiffer, G., - A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. algebra engrg. comm. comput., 7, 175-210, (1996) · Zbl 0847.20006 [6] Fomin, S.; Zelevinsky, A., Y-systems and generalized associahedra, Ann. of math., 158, 977-1018, (2003) · Zbl 1057.52003 [7] Fomin, S.; Zelevinsky, A., Cluster algebras. IV. coefficients, Compos. math., 143, 112-164, (2007) · Zbl 1127.16023 [8] Hohlweg, C.; Lange, C., Realizations of the associahedron and the cyclohedron, Discrete comput. geom., 37, 4, 517-543, (2007) · Zbl 1125.52011 [9] Hohlweg, C. [10] Humphreys, J.E., Reflection groups and Coxeter groups, (1990), Cambridge University Press Cambridge · Zbl 0725.20028 [11] Kamnitzer, J., Mirković-vilonen cycles and polytopes, (2005), 42 pp · Zbl 1271.20058 [12] Le Conte de Poly-Barbut, C., Sur LES treillis de Coxeter finis, Math. inf. sci. hum., 125, 41-57, (1994) · Zbl 0802.06016 [13] Loday, J.-L., Realization of the stasheff polytope, Arch. math. (basel), 83, 267-278, (2004) · Zbl 1059.52017 [14] Markl, M., Simplex, associahedron, and cyclohedron, (), 235-265 · Zbl 0919.18003 [15] Marsh, R.; Reineke, M.; Zelevinsky, A., Generalized associahedra via quiver representations, Trans. amer. math. soc., 355, 10, 4171-4186, (2003) · Zbl 1042.52007 [16] Postnikov, A., Permutohedra, associahedra, and beyond, Int. math. res. not. IMRN, 1026-1106, (2009) · Zbl 1162.52007 [17] Reading, N., Lattice congruences, fans and Hopf algebras, J. combin. theory ser. A, 110, 2, 237-273, (2005) · Zbl 1133.20027 [18] Reading, N., Cambrian lattices, Adv. math., 205, 2, 313-353, (2006) · Zbl 1106.20033 [19] Reading, N., Clusters, Coxeter-sortable elements and noncrossing partitions, Trans. amer. math. soc., 359, 12, 5931-5958, (2007) · Zbl 1189.05022 [20] Reading, N., Sortable elements and Cambrian lattices, Algebra universalis, 56, 3-4, 411-437, (2007) · Zbl 1184.20038 [21] Reading, N.; Speyer, D., Cambrian fans, J. eur. math. soc. (JEMS), 11, 2, 407-447, (2009) · Zbl 1213.20038 [22] Reiner, V., Equivariant fiber polytopes, Doc. math., 7, 113-132, (2002) · Zbl 1141.52309 [23] Schönert, M., GAP - groups, algorithms, and programming - version 3 release 4 patchlevel 4, (1997), Lehrstuhl D für Mathematik, RWTH Aachen Germany [24] Shnider, S.; Sternberg, S., Quantum groups: from coalgebras to Drinfeld algebras, (1994), International Press [25] Simion, R., A type-B associahedron, Adv. in appl. math., 30, 2-25, (2003) · Zbl 1047.52006 [26] Stanley, R., Enumerative combinatorics, vol. 1, (1997), Cambridge University Press Cambridge · Zbl 0889.05001 [27] Stasheff, J., Homotopy associativity of H-spaces I, II, Trans. amer. math. soc., 108, 275-312, (1963) · Zbl 0114.39402 [28] Stasheff, J., From operads to “physically” inspired theories, (), 53-81 · Zbl 0872.55010 [29] Yang, S.-W.; Zelevinsky, A., Cluster algebras of finite type via Coxeter elements and principal minors, Transform. groups, 13, 3-4, 855-895, (2008) · Zbl 1177.16010 [30] Ziegler, G., Lectures on polytopes, (1995), Springer-Verlag New York · Zbl 0823.52002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.