×

zbMATH — the first resource for mathematics

Global dynamics of Morse-Smale systems. (English. Russian original) Zbl 1233.37017
Proc. Steklov Inst. Math. 261, 112-135 (2008); translation from Tr. Mat. Inst. Steklova 261, 115-139 (2008).
Summary: This paper is a survey of relatively recent results on the classification of Morse-Smale dynamical systems on closed manifolds. It also contains both old and relatively recent results on the relationship between the topology of the ambient manifold and the dynamical characteristics of Morse-Smale systems.

MSC:
37D15 Morse-Smale systems
37C15 Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems
37E99 Low-dimensional dynamical systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. A. Andronov and L. S. Pontryagin, ”Structurally Stable Systems,” Dokl. Akad. Nauk SSSR 14(5), 247–250 (1937).
[2] D. V. Anosov, ”Structurally Stable Systems,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 169, 59–93 (1985) [Proc. Steklov Inst. Math. 169, 61–95 (1986)].
[3] D. V. Anosov, ”Basic Concepts. Elementary Theory,” in Dynamical Systems-1 (VINITI, Moscow, 1985), Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 1, pp. 156–178, 178–204; Engl. transl. in Dynamical Systems I (Springer, Berlin, 1988), Encycl. Math. Sci. 1.
[4] D. V. Anosov and V. V. Solodov, ”Hyperbolic Sets,” in Dynamical Systems-9 (VINITI, Moscow, 1991), Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 66, pp. 12–99; Engl. transl. in Dynamical Systems IX (Springer, Berlin, 1995), Encycl. Math. Sci. 66.
[5] S. Kh. Aranson, ”Trajectories on Nonorientable Two-Dimensional Manifolds,” Mat. Sb. 80(3), 314–333 (1969) [Math. USSR, Sb. 9, 297–313 (1969)].
[6] S. Kh. Aranson, Topological Classification of Foliations with Singularities and Homeomorphisms with Invariant Foliations on Closed Surfaces, Part 1: Foliations, Available from VINITI, No. 6887 V-88 (Gorki, 1988); Part 2: Homeomorphisms, Available from VINITI, No. 1043 V-89 (Gorki, 1989).
[7] S. Kh. Aranson and V. Z. Grines, ”Topological Classification of Flows on Closed Two-Dimensional Manifolds,” Usp. Mat. Nauk 41(1), 149–169 (1986) [Russ. Math. Surv. 41 (1), 183–208 (1986)]. · Zbl 0615.58015
[8] S. Kh. Aranson and V. Z. Grines, ”The Topological Classification of Cascades on Closed Two-Dimensional Manifolds,” Usp. Mat. Nauk 45(1), 3–32 (1990) [Russ. Math. Surv. 45 (1), 1–35 (1990)]. · Zbl 0705.58038
[9] S. Kh. Aranson and V. Z. Grines, ”Cascades on Surfaces,” in Dynamical Systems-9 (VINITI, Moscow, 1991), Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 66, pp. 148–187; Engl. transl. in Dynamical Systems IX (Springer, Berlin, 1995), Encycl. Math. Sci. 66.
[10] S. Kh. Aranson and V. S. Medvedev, ”Regular Components of Homeomorphisms of the n-Dimensional Sphere,” Mat. Sb. 85(1), 3–17 (1971) [Math. USSR, Sb. 14, 1–14 (1971)]. · Zbl 0213.25501
[11] V. S. Afraimovich and L. P. Shil’nikov, ”On Critical Sets of Morse-Smale Systems,” Tr. Mosk. Mat. O-va 28, 181–214 (1973) [Trans. Moscow Math. Soc. 28, 179–212 (1975)].
[12] A. N. Bezdenezhnykh and V. Z. Grines, ”Dynamical Properties and Topological Classification of Gradient-like Diffeomorphisms on Two-Dimensional Manifolds. I, II,” in Methods of the Qualitative Theory of Differential Equations, Ed. by E.A. Leontovich-Andronova (Gor’k. Gos. Univ., Gorki, 1985), pp. 22–38 [Sel. Math. Sov. 11, 1–11 (1992)]; (Gor’k. Gos. Univ., Gorki, 1987), pp. 24–32 [Sel. Math. Sov. 11, 13-17 (1992)]. · Zbl 0803.58007
[13] A. N. Bezdenezhnykh and V. Z. Grines, ”Realization of Gradient-like Diffeomorphisms of Two-Dimensional Manifolds,” in Differential and Integral Equations, Ed. by N.F. Otrokov (Gor’k. Gos. Univ., Gorki, 1985), pp. 33–37 [Sel. Math. Sov. 11, 19–23 (1992)]. · Zbl 0803.58007
[14] C. Bonatti, V. Z. Grines, V. S. Medvedev, and E. Pécou, ”On the Topological Classification of Gradientlike Diffeomorphisms without Heteroclinic Curves on Three-Dimensional Manifolds,” Dokl. Akad. Nauk 377(2), 151–155 (2001) [Dokl. Math. 63 (2), 161–164 (2001)]. · Zbl 1041.37007
[15] C. Bonatti, V. Z. Grines, V. S. Medvedev, and E. Pécou, ”On Morse-Smale Diffeomorphisms without Heteroclinic Intersections on Three-Manifolds,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 236, 66–78 (2002) [Proc. Steklov Inst. Math. 236, 58–69 (2002)]. · Zbl 1011.37013
[16] C. Bonatti, V. Z. Grines, and O. V. Pochinka, ”Classification of Morse-Smale Diffeomorphisms with a Finite Set of Heteroclinic Orbits on 3-Manifolds,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 250, 5–53 (2005) [Proc. Steklov Inst. Math. 250, 1–46 (2005)]. · Zbl 1138.37307
[17] E. Z. Borevich, ”Conditions for the Topological Equivalence of Two-Dimensional Morse-Smale Diffeomorphisms,” Diff. Uravn. 17, 1481–1482 (1981). · Zbl 0489.58017
[18] I. Vlasenko, ”Complete Invariant of a Morse-Smale Diffeomorphism on Two-Dimensional Manifolds,” in Some Problems of Modern Mathematics, Ed. by V.V. Sharko (Inst. Math., Natl. Acad. Sci. Ukr., Kyiv, 1998), pp. 60–93 [in Russian].
[19] V. Z. Grines, ”Topological Classification of Morse-Smale Diffeomorphisms with Finite Set of Heteroclinic Trajectories on Surfaces,” Mat. Zametki 54(3), 3–17 (1993) [Math. Notes 54, 881–889 (1993)]. · Zbl 0814.58025
[20] V. Z. Grines, E. V. Zhuzhoma, and V. S. Medvedev, ”New Relations for Morse-Smale Flows and Diffeomorphisms,” Dokl. Akad. Nauk 382(6), 730–733 (2002) [Dokl. Math. 65 (1), 95–97 (2002)]. · Zbl 1370.37063
[21] V. Z. Grines, E. V. Zhuzhoma, and V. S. Medvedev, ”New Relations for Morse-Smale Systems with Trivially Embedded One-Dimensional Separatrices,” Mat. Sb. 194(7), 25–56 (2003) [Sb. Math. 194, 979–1007 (2003)]. · Zbl 1077.37025
[22] V. Z. Grines, E. V. Zhuzhoma, and V. S. Medvedev, ”OnMorse-Smale Diffeomorphisms with Four Periodic Points on Closed Orientable Manifolds,” Mat. Zametki 74(3), 369–386 (2003) [Math. Notes 74, 352–366 (2003)]. · Zbl 1062.37017
[23] V. Z. Grines, E. V. Zhuzhoma, and V. S. Medvedev, ”Morse-Smale Diffeomorphisms without Heteroclinic Points on n-Dimensional Manifolds,” Tr. Srednevolzhsk. Mat. O-va 8(1), 200–204 (2006). · Zbl 1150.37320
[24] V. Z. Grines and V. S. Medvedev, ”Topological Conjugacy of 3-Dimensional Gradientlike Diffeomorphisms with Trivially Embedded Set of Separatrices of Saddle Fixed Points,” Mat. Zametki 66(6), 945–948 (1999) [Math. Notes 66, 781–784 (1999)]. · Zbl 1056.37501
[25] E. Ya. Gurevich, ”On the Topological Conjugacy of Morse-Smale Diffeomorphisms on n-Dimensional Manifolds without Heteroclinic Intersections,” Tr. Srednevolzhsk. Mat. O-va 3–4(1), 252–255 (2002).
[26] E. Ya. Gurevich, ”On Morse-Smale Diffeomorphisms on Manifolds of Dimension Greater than 3,” Tr. Srednevolzhsk. Mat. O-va 5(1), 161–165 (2003).
[27] E. Ya. Gurevich and V. S. Medvedev, ”On Manifolds of Dimension n That Admit Diffeomorphisms with Saddle Points of Indices 1 and n - 1,” Tr. Srednevolzhsk. Mat. O-va 8(1), 204–208 (2006). · Zbl 1150.57308
[28] A. Yu. Zhirov, ”Hyperbolic Attractors of Diffeomorphisms of Orientable Surfaces. Part 1: Encoding, Classification, and Coverings,” Mat. Sb. 185(6), 3–50 (1994) [Russ. Acad. Sci., Sb. Math. 82 (1), 135–174 (1995)]; ”Part 2: Enumeration and Application to Pseudo-Anosov Diffeomorphisms,” Mat. Sb. 185 (9), 29–80 (1994) [Russ. Acad. Sci., Sb. Math. 83 (1), 23–65 (1995)]; ”Part 3: Classification Algorithm,” Mat. Sb. 186 (2), 59–82 (1995) [Sb. Math. 186, 221–244 (1995)].
[29] E. A. Leontovich and A. G. Maier, ”Trajectories That Determine the Qualitative Structure of the Decomposition of a Sphere into Trajectories,” Dokl. Akad. Nauk SSSR 14(5), 251–257 (1937).
[30] E. A. Leontovich and A. G. Maier, ”On a Scheme That Determines the Topological Structure of a Decomposition into Trajectories,” Dokl. Akad. Nauk SSSR 103(4), 557–560 (1955).
[31] A. G. Maier, ”Structurally Stable Transformations of a Circle into a Circle,” Uch. Zap. Gor’k. Univ., No. 12, 215–229 (1939).
[32] Z. Nitecki, Differentiable Dynamics: An Introduction to the Orbit Structure of Diffeomorphisms (MIT Press, Cambridge, MA, 1971; Mir, Moscow, 1975). · Zbl 0246.58012
[33] A. A. Oshemkov and V. V. Sharko, ”Classification of Morse-Smale Flows on Two-Dimensional Manifolds,” Mat. Sb. 189(8), 93–140 (1998) [Sb. Math. 189, 1205–1250 (1998)]. · Zbl 0915.58045
[34] V. A. Pliss, ”On the Structural Stability of Differential Equations on the Torus,” Vestn. Leningr. Univ., Ser.: Mat., Mekh., Astron. 13(3), 15–23 (1960). · Zbl 0096.29404
[35] O. V. Pochinka, ”On the Topological Conjugacy of Simplest Morse-Smale Diffeomorphisms with a Finite Number of Heteroclinic Orbits on the Manifold S 3,” Tr. Srednevolzhsk. Mat. O-va 3–4(1), 138–142 (2002).
[36] O. V. Pochinka, ”Classification of Morse-Smale Diffeomorphisms with a Finite Set of Heteroclinic Orbits on 3-Manifolds,” Cand. Sci. (Phys.-Math.) Dissertation (Nizhni Novgorod State Univ., Nizhni Novgorod, 2003).
[37] O. V. Pochinka and E. A. Talanova, ”Local Scheme of Gradient-like Diffeomorphisms on 3-Manifolds,” Tr. Srednevolzhsk. Mat. O-va 8(1), 288–294 (2006). · Zbl 1150.37309
[38] A. O. Prishlyak, ”Morse-Smale Vector Fields without Closed Trajectories on Three-Dimensional Manifolds,” Mat. Zametki 71(2), 254–260 (2002) [Math. Notes 71, 230–235 (2002)]. · Zbl 1130.37350
[39] Ya. G. Sinai, ”Markov Partitions and C-Diffeomorphisms,” Funkts. Anal. Prilozh. 2(1), 64–89 (1968) [Funct. Anal. Appl. 2, 61–82 (1968)]. · Zbl 0182.55003
[40] Ya. G. Sinai, ”Construction of Markov Partitions,” Funkts. Anal. Prilozh. 2(3), 70–80 (1968) [Funct. Anal. Appl. 2, 245–253 (1968)]. · Zbl 0194.22602
[41] Ya. L. Umanskii, ”Necessary and Sufficient Conditions for Topological Equivalence of Three-Dimensional Morse-Smale Dynamical Systems with a Finite Number of Singular Trajectories,” Mat. Sb. 181(2), 212–239 (1990) [Math. USSR, Sb. 69 (1), 227–253 (1991)].
[42] S. Kh. Aranson, G. R. Belitsky, and E. V. Zhuzhoma, Introduction to the Qualitative Theory of Dynamical Systems on Surfaces (Am. Math. Soc., Providence, RI, 1996), Transl. Math. Monogr. 153. · Zbl 0853.58090
[43] D. Asimov, ”Round Handles and Non-singular Morse-Smale Flows,” Ann. Math., Ser. 2, 102, 41–54 (1975). · Zbl 0316.57020
[44] S. Batterson, ”The Dynamics of Morse-Smale Diffeomorphisms on the Torus,” Trans. Am. Math. Soc. 256, 395–403 (1979). · Zbl 0424.58015
[45] S. Batterson, ”Orientation-Reversing Morse-Smale Diffeomorphisms on the Torus,” Trans. Am. Math. Soc. 264, 29–37 (1981). · Zbl 0476.58013
[46] S. Batterson, M. Handel, and C. Narasimhan, ”Orientation Reversing Morse-Smale Diffeomorphisms of S 2,” Invent. Math. 64, 345–356 (1981). · Zbl 0481.58021
[47] F. Béguin, ”Smale Diffeomorphisms of Surfaces: An Algorithm for the Conjugacy Problem,” Preprint (Univ. Bourgogne, Dijon, 1999).
[48] P. Blanchard and J. Franks, ”The Dynamical Complexity of Orientation Reversing Homeomorphisms of Surfaces,” Invent. Math. 62, 333–339 (1980). · Zbl 0481.58020
[49] C. Bonatti and V. Grines, ”Knots as Topological Invariant for Gradient-like Diffeomorphisms of the Sphere S 3,” J. Dyn. Control Syst. 6, 579–602 (2000). · Zbl 0959.37017
[50] C. Bonatti, V. Grines, and R. Langevin, ”Dynamical Systems in Dimension 2 and 3: Conjugacy Invariants and Classification,” Comput. Appl. Math. 20, 11–50 (2001). · Zbl 1121.37306
[51] C. Bonatti, V. Grines, V. Medvedev, and E. Pécou, ”Three-Manifolds Admitting Morse-Smale Diffeomorphisms without Heteroclinic Curves,” Topology Appl. 117, 335–344 (2002). · Zbl 1157.37309
[52] C. Bonatti, V. Grines, V. Medvedev, and E. Pécou, ”Topological Classification of Gradient-like Diffeomorphisms on 3-Manifolds,” Topology 43, 369–391 (2004). · Zbl 1056.37023
[53] C. Bonatti and R. Langevin, Difféomorphismes de Smale des surfaces (Soc. Math. France, Paris, 1998), Astérisque 250.
[54] R. Bowen, ”Topological Entropy and Axiom A,” in Global Analysis (Am. Math. Soc., Providence, RI, 1970), Proc. Symp. Pure Math. 14, pp. 23–41.
[55] R. Bowen, ”Periodic Points and Measures for Axiom A Diffeomorphisms,” Trans. Am. Math. Soc. 154, 337–397 (1971). · Zbl 0212.29103
[56] J. C. Cantrell and C. H. Edwards, ”Almost Locally Polyhedral Curves in Euclidean n-Space,” Trans. Am. Math. Soc. 107, 451–457 (1963). · Zbl 0117.40901
[57] G. Fleitas, ”Classification of Gradient-like Flows in Dimensions Two and Three,” Bol. Soc. Bras. Mat. 6, 155–183 (1975). · Zbl 0383.58013
[58] R. H. Fox and E. Artin, ”Some Wild Cells and Spheres in Three-Dimensional Space,” Ann. Math., Ser. 2, 49, 979–990 (1948). · Zbl 0033.13602
[59] J. M. Franks, ”Some Smooth Maps with Infinitely Many Hyperbolic Periodic Points,” Trans. Am. Math. Soc. 226, 175–179 (1977). · Zbl 0346.58011
[60] J. M. Franks, ”The Periodic Structure of Non-singular Morse-Smale Flows,” Comment. Math. Helv. 53, 279–294 (1978). · Zbl 0403.58008
[61] J. M. Franks, Homology and Dynamical Systems (Am. Math. Soc., Providence, RI, 1982), CBMS Reg. Conf. Ser. Math. 49. · Zbl 0497.58018
[62] V. Grines, V. Medvedev, and E. Zhuzhoma, ”Global Dynamics of Morse-Smale Diffeomorphisms,” in Differential Equations and Dynamical Systems: Abstr. Int. Conf., Suzdal (Russia), June 10–15, 2006 (Vladimir State Univ., Vladimir, 2006), p. 264. · Zbl 1150.37320
[63] C. Gutierrez, ”Structural Stability for Flows on the Torus with a Cross-Cap,” Trans. Am. Math. Soc. 241, 311–320 (1978). · Zbl 0396.58017
[64] C. Gutierrez and W. de Melo, ”The Connected Components of Morse-Smale Vector Fields on Two Manifolds,” in Geometry and Topology (Springer, Berlin, 1977), Lect. Notes Math. 597, pp. 230–251. · Zbl 0356.58007
[65] M. Handel, ”The Entropy of Orientation Reversing Homeomorphisms of Surfaces,” Topology 21, 291–296 (1982). · Zbl 0502.58028
[66] R. Langevin, ”Quelques nouveaux invariants des difféomorphismes Morse-Smale d’une surface,” Ann. Inst. Fourier 43, 265–278 (1993). · Zbl 0769.58033
[67] N. G. Markley, ”The Poincaré-Bendixon Theorem for the Klein Bottle,” Trans. Am. Math. Soc. 135, 159–165 (1969). · Zbl 0175.50101
[68] J. W. Morgan, ”Non-singular Morse-Smale Flows on 3-Dimensional Manifolds,” Topology 18, 41–53 (1979). · Zbl 0406.58020
[69] C. C. Narasimhan, ”The Periodic Behavior of Morse-Smale Diffeomorphisms on Compact Surfaces,” Trans. Am. Math. Soc. 248, 145–169 (1979). · Zbl 0438.58019
[70] I. Nikolaev, ”Graphs and Flows on Surfaces,” Ergodic Theory Dyn. Syst. 18, 207–220 (1998). · Zbl 0937.37024
[71] I. Nikolaev and E. Zhuzhoma, Flows on 2-Dimensional Manifolds (Springer, Berlin, 1999), Lect. Notes Math. 1705. · Zbl 1022.37027
[72] J. Palis, ”On Morse-Smale Dynamical Systems,” Topology 8, 385–404 (1969). · Zbl 0189.23902
[73] J. Palis and S. Smale, ”Structural Stability Theorems,” in Global Analysis (Am. Math. Soc., Providence, RI, 1970), Proc. Symp. Pure Math. 14, pp. 223–231.
[74] M. M. Peixoto, ”On Structural Stability,” Ann. Math., Ser. 2, 69, 199–222 (1959). · Zbl 0084.08403
[75] M. M. Peixoto, ”Structural Stability on Two-Dimensional Manifolds,” Topology 1, 101–120 (1962). · Zbl 0107.07103
[76] M. M. Peixoto, ”Structural Stability on Two-Dimensional Manifolds. A Further Remark,” Topology 2, 179–180 (1963). · Zbl 0116.06802
[77] M. M. Peixoto, ”On the Classification of Flows on 2-Manifolds,” in Dynamical Systems: Proc. Symp. Univ. Bahia, Salvador (Brazil), 1971 (Academic, New York, 1973), pp. 389–419.
[78] D. Pixton, ”Wild Unstable Manifolds,” Topology 16, 167–172 (1977). · Zbl 0355.58004
[79] L. Plachta, ”Chord Diagrams in the Classification of Morse-Smale Flows on 2-Manifolds,” in Knot Theory (Pol. Acad. Sci., Inst. Math., Warsaw, 1998), Banach Center Publ. 42, pp. 255–273. · Zbl 1005.37503
[80] L. Plachta, ”The Combinatorics of Gradient-like Flows and Foliations on Closed Surfaces. I: Topological Classification,” Topology Appl. 128, 63–91 (2003). · Zbl 1019.37025
[81] O. Pochinka, ”On Topological Conjugacy of Simplest Morse-Smale Diffeomorphisms on S 3 with the Finite Number of Heteroclinic Orbits,” in Progress in Nonlinear Science: Proc. Int. Conf., Nizhni Novgorod, 2001 (Inst. Appl. Phys., Russ. Acad. Sci., Nizhni Novgorod, 2002), Vol. 1, pp. 338–345.
[82] K. Sasano, ”Links of Closed Orbits of Nonsingular Morse-Smale Flows,” Proc. Am. Math. Soc. 88, 727–734 (1983). · Zbl 0536.58016
[83] M. Shub, ”Morse-Smale Diffeomorphisms Are Unipotent on Homology,” in Dynamical Systems: Proc. Symp. Univ. Bahia, Salvador (Brazil), 1971 (Academic, New York, 1973), pp. 489–491.
[84] M. Shub and D. Sullivan, ”Homology Theory and Dynamical Systems,” Topology 14, 109–132 (1975). · Zbl 0408.58023
[85] S. Smale, ”Morse Inequalities for a Dynamical System,” Bull. Am. Math. Soc. 66, 43–49 (1960). · Zbl 0100.29701
[86] S. Smale, ”The Generalized Poincaré Conjecture in Higher Dimensions,” Bull. Am. Math. Soc. 66, 373–375 (1960). · Zbl 0099.39201
[87] S. Smale, ”On Gradient Dynamical Systems,” Ann. Math., Ser. 2, 74, 199–206 (1961). · Zbl 0136.43702
[88] S. Smale, ”Generalized Poincaré’s Conjecture in Dimensions Greater than Four,” Ann. Math., Ser. 2, 74, 391–406 (1961). · Zbl 0099.39202
[89] S. Smale, ”Differentiable Dynamical Systems,” Bull. Am. Math. Soc. 73, 747–817 (1967) [Usp. Mat. Nauk 25 (1), 113–185 (1970)]. · Zbl 0202.55202
[90] I. Vlasenko, ”On the Relations on the Set of Heteroclinic Points of Morse-Smale Diffeomorphisms on 2-Manifolds,” Methods Funct. Anal. Topology 5(3), 90–96 (1999). · Zbl 0948.37018
[91] M. Wada, ”Closed Orbits of Non-singular Morse-Smale Flows on S 3,” J. Math. Soc. Japan 41, 405–413 (1989). · Zbl 0672.58042
[92] X. Wang, ”The C*-Algebras of Morse-Smale Flows on Two-Manifolds,” Ergodic Theory Dyn. Syst. 10, 565–597 (1990). · Zbl 0728.58017
[93] K. Yano, ”A Note on Non-singular Morse-Smale Flows on S 3,” Proc. Japan Acad. A 58, 447–450 (1982). · Zbl 0541.58029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.